Epigenomic profiling of the infrapatellar fat pad in osteoarthritis

Osteoarthritis is a prevalent, complex disease of the joints, and affects multiple intra-articular tissues. Here, we have examined genome-wide DNA methylation profiles of primary infrapatellar fat pad and matched blood samples from 70 osteoarthritis patients undergoing total knee replacement surgery. Comparing the DNA methylation profiles between these tissues reveal widespread epigenetic differences. We produce the first genome-wide methylation quantitative trait locus (mQTL) map of fat pad, and make the resource available to the wider community. Using two-sample Mendelian randomization and colocalization analyses, we resolve osteoarthritis GWAS signals and provide insights into the molecular mechanisms underpinning disease aetiopathology. Our findings provide the first view of the epigenetic landscape of infrapatellar fat pad primary tissue in osteoarthritis.

[1]  E. Zeggini,et al.  Insights from multi-omics integration in complex disease primary tissues. , 2022, Trends in genetics : TIG.

[2]  E. Zeggini,et al.  An epigenome-wide view of osteoarthritis in primary tissues , 2022, American journal of human genetics.

[3]  E. Zeggini,et al.  A molecular map of long non-coding RNA expression, isoform switching and alternative splicing in osteoarthritis , 2022, Human molecular genetics.

[4]  E. Zeggini,et al.  Insights into the molecular landscape of osteoarthritis in human tissues , 2021, Current opinion in rheumatology.

[5]  Tom R. Gaunt,et al.  Deciphering osteoarthritis genetics across 826,690 individuals from 9 populations , 2021, Cell.

[6]  Hongbing Liu,et al.  lncRNA FER1L4 is dysregulated in osteoarthritis and regulates IL-6 expression in human chondrocyte cells , 2021, Scientific Reports.

[7]  E. Zeggini,et al.  A molecular quantitative trait locus map for osteoarthritis , 2021, Nature Communications.

[8]  E. Suchiman,et al.  RNA Sequencing Reveals Interacting Key Determinants of Osteoarthritis Acting in Subchondral Bone and Articular Cartilage: Identification of IL11 and CHADL as Attractive Treatment Targets , 2020, Arthritis & rheumatology.

[9]  Ni Zeng,et al.  Infrapatellar Fat Pad and Knee Osteoarthritis , 2020, Aging and disease.

[10]  C. G. Fontanella,et al.  Infrapatellar Fat Pad Gene Expression and Protein Production in Patients with and without Osteoarthritis , 2020, International journal of molecular sciences.

[11]  D. Deehan,et al.  Multi‐Tissue Epigenetic and Gene Expression Analysis Combined With Epigenome Modulation Identifies RWDD2B as a Target of Osteoarthritis Susceptibility , 2020, Arthritis & rheumatology.

[12]  D. Deehan,et al.  Multi-tissue epigenetic analysis of the osteoarthritis susceptibility locus mapping to the plectin gene PLEC , 2020, bioRxiv.

[13]  G. Collins,et al.  Global, regional and national burden of osteoarthritis 1990-2017: a systematic analysis of the Global Burden of Disease Study 2017 , 2019, Annals of the Rheumatic Diseases.

[14]  Christopher D. Brown,et al.  The GTEx Consortium atlas of genetic regulatory effects across human tissues , 2019, Science.

[15]  F. Tian,et al.  Wnt signaling: a promising target for osteoarthritis therapy , 2019, Cell Communication and Signaling.

[16]  M. Lotz,et al.  Wwp2 maintains cartilage homeostasis through regulation of Adamts5 , 2019, Nature Communications.

[17]  George Davey Smith,et al.  Meffil: efficient normalization and analysis of very large DNA methylation datasets , 2018, Bioinform..

[18]  Valeriia Haberland,et al.  The MR-Base platform supports systematic causal inference across the human phenome , 2018, eLife.

[19]  C. G. Fontanella,et al.  Infrapatellar fat pad features in osteoarthritis: a histopathological and molecular study , 2017, Rheumatology.

[20]  Timothy J. Peters,et al.  Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling , 2016, Genome Biology.

[21]  Ole Schulz-Trieglaff,et al.  AKT: Ancestry and Kinship Toolkit , 2016, bioRxiv.

[22]  A. McIntosh,et al.  Identification of polymorphic and off-target probe binding sites on the Illumina Infinium MethylationEPIC BeadChip , 2016, bioRxiv.

[23]  B. Olsen,et al.  Targeting VEGF and Its Receptors for the Treatment of Osteoarthritis and Associated Pain , 2016, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[24]  R. Toes,et al.  Inflammatory Cells in Patients with Endstage Knee Osteoarthritis: A Comparison between the Synovium and the Infrapatellar Fat Pad , 2016, The Journal of Rheumatology.

[25]  H. Cordell,et al.  Methylation quantitative trait locus analysis of osteoarthritis links epigenetics with genetic risk , 2015, Human molecular genetics.

[26]  Emmanouil T. Dermitzakis,et al.  Fast and efficient QTL mapper for thousands of molecular phenotypes , 2015, bioRxiv.

[27]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[28]  F. Berenbaum,et al.  Induction of an Inflammatory and Prodegradative Phenotype in Autologous Fibroblast‐like Synoviocytes by the Infrapatellar Fat Pad From Patients With Knee Osteoarthritis , 2014, Arthritis & rheumatology.

[29]  J. Verhaar,et al.  Stimulation of fibrotic processes by the infrapatellar fat pad in cultured synoviocytes from patients with osteoarthritis: a possible role for prostaglandin f2α. , 2013, Arthritis and rheumatism.

[30]  C. Wallace,et al.  Bayesian Test for Colocalisation between Pairs of Genetic Association Studies Using Summary Statistics , 2013, PLoS genetics.

[31]  R. Weksberg,et al.  Discovery of cross-reactive probes and polymorphic CpGs in the Illumina Infinium HumanMethylation450 microarray , 2013, Epigenetics.

[32]  ENCODEConsortium,et al.  An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.

[33]  Andrew E. Jaffe,et al.  Bioinformatics Applications Note Gene Expression the Sva Package for Removing Batch Effects and Other Unwanted Variation in High-throughput Experiments , 2022 .

[34]  R. Durbin,et al.  Using probabilistic estimation of expression residuals (PEER) to obtain increased power and interpretability of gene expression analyses , 2012, Nature Protocols.

[35]  C. Virtanen,et al.  Microarray Analysis of the Infrapatellar Fat Pad in Knee Osteoarthritis: Relationship with Joint Inflammation , 2011, The Journal of Rheumatology.

[36]  Xiao Zhang,et al.  Comparison of Beta-value and M-value methods for quantifying methylation levels by microarray analysis , 2010, BMC Bioinformatics.

[37]  P. Nash,et al.  Regulation of Epidermal Growth Factor Receptor Ubiquitination and Trafficking by the USP8·STAM Complex* , 2010, The Journal of Biological Chemistry.

[38]  J. Verhaar,et al.  The infrapatellar fat pad should be considered as an active osteoarthritic joint tissue: a narrative review. , 2010, Osteoarthritis and cartilage.

[39]  S. Read,et al.  Cellular and histopathological changes in the infrapatellar fat pad in the monoiodoacetate model of osteoarthritis pain. , 2009, Osteoarthritis and cartilage.

[40]  Pan Du,et al.  lumi: a pipeline for processing Illumina microarray , 2008, Bioinform..