Discrete maximum principles for FE solutions of nonstationary diffusion‐reaction problems with mixed boundary conditions

Abstract: In this paper we derive and discuss sufficient conditions thatprovide the validity of the discrete maximum principle for nonstationarydiffusion-reaction problems with mixed boundary conditions solved by meansof simplicial finite elements and the θ time discretization method. Theoreticalanalysis is supported by numerical experiments. AMS subject classifications: 65M60, 65M50, 35B50Keywords: nonstationarydiffusion-reactionproblem, maximumprinciple, mixedboundary conditions, linear finite elements, discrete maximum principle, simplicialpartition, angle conditionCorrespondenceDepartment of Applied Analysis, E¨otv ¨os Lor´and UniversityH–1518, Budapest, Pf. 120, HungaryInstitute of Mathematics and Statistics, University of West-HungaryErzs´ebet u. 9, H–9400, Sopron, HungaryInstitute of Mathematics, Helsinki University of TechnologyP.O. Box 1100, FIN–02015 TKK, Finlandfaragois@cs.elte.hu, rhorvath@ktk.nyme.hu, sergey.korotov@hut.fiISBN 978-951-22-9510-4 (print)ISBN 978-951-22-9511-1 (PDF)ISSN 0784-3143 (print)ISSN 1797-5867 (PDF)Helsinki University of TechnologyFaculty of Information and Natural SciencesDepartment of Mathematics and Systems AnalysisP.O. Box 1100, FI-02015 TKK, Finlandemail: math@tkk.fi http://math.tkk.fi/

[1]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[2]  Róbert Horváth,et al.  Discrete maximum principle for linear parabolic problems solved on hybrid meshes , 2005 .

[3]  Sergey Korotov,et al.  On Nonobtuse Simplicial Partitions , 2009, SIAM Rev..

[4]  Tomás Vejchodský,et al.  Discrete maximum principle for higher-order finite elements in 1D , 2007, Math. Comput..

[5]  F. M. Kirillova,et al.  On discrete maximum principle , 1979 .

[6]  J. Gillis,et al.  Matrix Iterative Analysis , 1961 .

[7]  Richard S. Varga,et al.  On a Discrete Maximum Principle , 1966 .

[8]  Tomáš Vejchodský,et al.  On the Nonnegativity Conservation in Semidiscrete Parabolic Problems , 2004 .

[9]  Sergey Korotov,et al.  Discrete maximum principles for finite element solutions of nonlinear elliptic problems with mixed boundary conditions , 2005, Numerische Mathematik.

[10]  Chaodong Yang,et al.  Minimum time‐step criteria for the Galerkin finite element methods applied to one‐dimensional parabolic partial differential equations , 2006 .

[11]  Charles A. Hall,et al.  The maximum principle for bilinear elements , 1984 .

[12]  P. G. Ciarlet,et al.  Maximum principle and uniform convergence for the finite element method , 1973 .

[13]  Ludmil T. Zikatanov,et al.  A monotone finite element scheme for convection-diffusion equations , 1999, Math. Comput..

[14]  Philippe G. Ciarlet,et al.  Discrete maximum principle for finite-difference operators , 1970 .

[15]  O. Ladyženskaja Linear and Quasilinear Equations of Parabolic Type , 1968 .

[16]  Róbert Horváth Sufficient conditions of the discrete maximum-minimum principle for parabolic problems on rectangular meshes , 2008, Comput. Math. Appl..

[17]  R. Horváth,et al.  A review of reliable numerical models for three‐dimensional linear parabolic problems , 2007 .

[18]  Sergey Korotov,et al.  Dissection of the path-simplex in R-n into n path-subsimplices , 2007 .

[19]  H. H. Rachford,et al.  The Numerical Solution of Parabolic and Elliptic Differential Equations , 1955 .

[20]  Sergey Korotov,et al.  Weakened acute type condition for tetrahedral triangulations and the discrete maximum principle , 2001, Math. Comput..

[21]  Róbert Horváth,et al.  Discrete Maximum Principle for Galerkin Finite Element Solutions to Parabolic Problems on Rectangular Meshes , 2004 .