Computation of the M matrix for fourth-order problems

This paper is concerned with the numerical computation of the Titchmarsh-Weyl M matrix. We show how an algorithm may be developed which relates solutions of an initial-value problem to an approximation of the M matrix. In some special cases we compare the results from our algorithm with results obtained using special functions.

[1]  W. D. Evans,et al.  Two Integral Inequalities , 1994 .

[2]  W. D. Evans,et al.  A numerical investigation of HELP inequalities , 1994 .

[3]  M. Delfour,et al.  Noniterative approximations to the solution of the matrix Riccati differential equation , 1992 .

[4]  W. D. Evans,et al.  HELP integral and series inequalities , 1992 .

[5]  J. D. Pryce,et al.  A numerical method for the determination of the Titchmarsh-Weyl m-coefficient , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[6]  J. Pryce,et al.  Numerical determination of the Titchmarsh-Weyl m-coefficient and its applications to HELP inequalities , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[7]  Allan M. Krall,et al.  M (λ) theory for singular Hamiltonian systems with two singular points , 1989 .

[8]  Ian J. Thompson,et al.  Modified bessel functions Iv(z) and Kv(z) of real order and complex argument, to selected accuracy , 1987 .

[9]  C. Bennewitz A general version of the Hardy–Littlewood–Polya–Everitt (HELP) inequality , 1984, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[10]  W. D. Evans,et al.  A return to the Hardy-Littlewood integral inequality , 1982, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[11]  J. K. Shaw,et al.  ON THE SPECTRUM OF A SINGULAR HAMILTONIAN SYSTEM , 1982 .

[12]  J. K. Shaw,et al.  On Titchmarsh-Weyl M(λ)-functions for linear Hamiltonian systems , 1981 .

[13]  Don B. Hinton,et al.  Titchmarsh-Weyl Theory for Hamiltonian Systems , 1981 .

[14]  A. Russell On certain fourth-order integral inequalities , 1979, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[15]  A. Russell On a fourth-order singular integral inequality , 1978, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[16]  W. D. Evans,et al.  On the limit point and strong limit point classification of 2nth order differential expressions with wildly oscillating coefficients , 1973 .

[17]  Hirondo Kuki,et al.  Complex gamma function with error control , 1972, CACM.

[18]  W. N. Everitt XXIII.—On an Extension to an Integro-differential Inequality of Hardy, Littlewood and Polya , 1972, Proceedings of the Royal Society of Edinburgh. Section A. Mathematical and Physical Sciences.

[19]  P. Nelson A comparative study of invariant imbedding and superposition , 1972 .

[20]  W. N. Everitt,et al.  VII.—On the Spectrum of Ordinary Second Order Differential Operators. , 1969, Proceedings of the Royal Society of Edinburgh. Section A. Mathematical and Physical Sciences.

[21]  Robert E. Kalaba,et al.  Invariant imbedding and the numerical integration of boundary-value problems for unstable linear systems of ordinary differential equations , 1967, CACM.

[22]  P. Goldbart,et al.  Linear differential operators , 1967 .

[23]  F. V. Atkinson,et al.  Discrete and Continuous Boundary Problems , 1964 .

[24]  W. N. Everitt Fourth order singular differential equations , 1963 .

[25]  C. A. Rogers Two Integral Inequalities , 1956 .

[26]  H. Weyl,et al.  Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Funktionen , 1910 .