On Sets Defining Few Ordinary Lines

Let $$P$$P be a set of $$n$$n points in the plane, not all on a line. We show that if $$n$$n is large then there are at least $$n/2$$n/2ordinary lines, that is to say lines passing through exactly two points of $$P$$P. This confirms, for large $$n$$n, a conjecture of Dirac and Motzkin. In fact we describe the exact extremisers for this problem, as well as all sets having fewer than $$n-C$$n-C ordinary lines for some absolute constant $$C$$C. We also solve, for large $$n$$n, the “orchard-planting problem”, which asks for the maximum number of lines through exactly 3 points of $$P$$P. Underlying these results is a structure theorem which states that if $$P$$P has at most $$Kn$$Kn ordinary lines then all but O(K) points of $$P$$P lie on a cubic curve, if $$n$$n is sufficiently large depending on $$K$$K.

[1]  W. T. Gowers,et al.  A New Proof of Szemerédi's Theorem for Arithmetic Progressions of Length Four , 1998 .

[2]  Micha Sharir,et al.  Combinatorial Geometry and Its Algorithmic Applications , 2008 .

[3]  W. Moser,et al.  On the Number of Ordinary Lines Determined by n Points , 1958, Canadian Journal of Mathematics.

[4]  Alex Scott,et al.  On a problem of Erdős and Moser , 2015 .

[5]  Jesús M. Carnicer,et al.  Pre-publicaciones Del Seminario Matematico 2006 Generalized Principal Lattices and Cubic Pencils Generalized Principal Lattices and Cubic Pencils , 2022 .

[6]  Glen Mullineux,et al.  Intersection of curves , 1986 .

[7]  J. Csima,et al.  There exist 6n/13 ordinary points , 1993, Discret. Comput. Geom..

[8]  Jesús M. Carnicer,et al.  Cubic pencils of lines and bivariate interpolation , 2006 .

[9]  Michael Rubinstein,et al.  The Number of Intersection Points Made by the Diagonals of a Regular Polygon , 1995, SIAM J. Discret. Math..

[10]  Robert Bix,et al.  Conics and Cubics: A Concrete Introduction to Algebraic Curves , 1998 .

[11]  G. Dirac COLLINEARITY PROPERTIES OF SETS OF POINTS , 1951 .

[12]  Helmut Hasse,et al.  Number Theory , 2020, An Introduction to Probabilistic Number Theory.

[13]  Jonathan Reynolds,et al.  Rational points on elliptic curves , 2006 .

[14]  P. Borwein,et al.  A survey of Sylvester's problem and its generalizations , 1990 .

[15]  N. Sloane,et al.  The orchard problem , 1974 .

[16]  O. Hesse Über die Elimination der Variabeln aus drei algebraischen Gleichungen vom zweiten Grade mit zwei Variabeln. , 1844 .

[17]  Benny Sudakov,et al.  On a question of Erdős and Moser , 2005 .

[18]  P. Erdos,et al.  Extremal problems in combinatorial geometry , 1996 .

[19]  W. W. Ball,et al.  Mathematical Recreations and Essays , 1905, Nature.

[20]  Niranjan Nilakantan,et al.  Extremal Problems Related to the Sylvester-Gallai Theorem , 2007 .

[21]  G. Freiman Foundations of a Structural Theory of Set Addition , 2007 .

[22]  Robert Bix Conics and cubics , 1998 .

[23]  József Beck,et al.  On the lattice property of the plane and some problems of Dirac, Motzkin and Erdős in combinatorial geometry , 1983, Comb..

[24]  Joe Harris,et al.  Cayley-Bacharach theorems and conjectures , 1996 .

[25]  D. W. Crowe,et al.  Sylvester's Problem on Collinear Points , 1968 .

[26]  M. Kneser,et al.  Ein Satz über abelsche Gruppen mit Anwendungen auf die Geometrie der Zahlen , 1954 .

[27]  I. Bacharach,et al.  Ueber den Cayley'schen Schnittpunktsatz , 1886 .

[28]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[29]  György Elekes,et al.  Convexity and Sumsets , 2000 .

[30]  Terence Tao,et al.  Additive combinatorics , 2007, Cambridge studies in advanced mathematics.

[31]  M. Kneser,et al.  Abschätzung der asymptotischen Dichte von Summenmengen , 1953 .

[32]  T. Motzkin The lines and planes connecting the points of a finite set , 1951 .

[33]  J. Fournier Sharpness in Young’s inequality for convolution , 1977 .