On Sets Defining Few Ordinary Lines
暂无分享,去创建一个
Ben Green | Terence Tao | T. Tao | B. Green
[1] W. T. Gowers,et al. A New Proof of Szemerédi's Theorem for Arithmetic Progressions of Length Four , 1998 .
[2] Micha Sharir,et al. Combinatorial Geometry and Its Algorithmic Applications , 2008 .
[3] W. Moser,et al. On the Number of Ordinary Lines Determined by n Points , 1958, Canadian Journal of Mathematics.
[4] Alex Scott,et al. On a problem of Erdős and Moser , 2015 .
[5] Jesús M. Carnicer,et al. Pre-publicaciones Del Seminario Matematico 2006 Generalized Principal Lattices and Cubic Pencils Generalized Principal Lattices and Cubic Pencils , 2022 .
[6] Glen Mullineux,et al. Intersection of curves , 1986 .
[7] J. Csima,et al. There exist 6n/13 ordinary points , 1993, Discret. Comput. Geom..
[8] Jesús M. Carnicer,et al. Cubic pencils of lines and bivariate interpolation , 2006 .
[9] Michael Rubinstein,et al. The Number of Intersection Points Made by the Diagonals of a Regular Polygon , 1995, SIAM J. Discret. Math..
[10] Robert Bix,et al. Conics and Cubics: A Concrete Introduction to Algebraic Curves , 1998 .
[11] G. Dirac. COLLINEARITY PROPERTIES OF SETS OF POINTS , 1951 .
[12] Helmut Hasse,et al. Number Theory , 2020, An Introduction to Probabilistic Number Theory.
[13] Jonathan Reynolds,et al. Rational points on elliptic curves , 2006 .
[14] P. Borwein,et al. A survey of Sylvester's problem and its generalizations , 1990 .
[15] N. Sloane,et al. The orchard problem , 1974 .
[16] O. Hesse. Über die Elimination der Variabeln aus drei algebraischen Gleichungen vom zweiten Grade mit zwei Variabeln. , 1844 .
[17] Benny Sudakov,et al. On a question of Erdős and Moser , 2005 .
[18] P. Erdos,et al. Extremal problems in combinatorial geometry , 1996 .
[19] W. W. Ball,et al. Mathematical Recreations and Essays , 1905, Nature.
[20] Niranjan Nilakantan,et al. Extremal Problems Related to the Sylvester-Gallai Theorem , 2007 .
[21] G. Freiman. Foundations of a Structural Theory of Set Addition , 2007 .
[22] Robert Bix. Conics and cubics , 1998 .
[23] József Beck,et al. On the lattice property of the plane and some problems of Dirac, Motzkin and Erdős in combinatorial geometry , 1983, Comb..
[24] Joe Harris,et al. Cayley-Bacharach theorems and conjectures , 1996 .
[25] D. W. Crowe,et al. Sylvester's Problem on Collinear Points , 1968 .
[26] M. Kneser,et al. Ein Satz über abelsche Gruppen mit Anwendungen auf die Geometrie der Zahlen , 1954 .
[27] I. Bacharach,et al. Ueber den Cayley'schen Schnittpunktsatz , 1886 .
[28] John B. Shoven,et al. I , Edinburgh Medical and Surgical Journal.
[29] György Elekes,et al. Convexity and Sumsets , 2000 .
[30] Terence Tao,et al. Additive combinatorics , 2007, Cambridge studies in advanced mathematics.
[31] M. Kneser,et al. Abschätzung der asymptotischen Dichte von Summenmengen , 1953 .
[32] T. Motzkin. The lines and planes connecting the points of a finite set , 1951 .
[33] J. Fournier. Sharpness in Young’s inequality for convolution , 1977 .