Thermodynamic costs of Turing machines

Turing Machines (TMs) are the canonical model of computation in computer science and physics. We combine techniques from algorithmic information theory and stochastic thermodynamics to analyze the thermodynamic costs of TMs. We consider two different ways of realizing a given TM with a physical process. The first realization is designed to be thermodynamically reversible when fed with random input bits. The second realization is designed to generate less heat, up to an additive constant, than any realization that is computable (i.e., consistent with the physical Church-Turing thesis). We consider three different thermodynamic costs: the heat generated when the TM is run on each input (which we refer to as the "heat function"), the minimum heat generated when a TM is run with an input that results in some desired output (which we refer to as the "thermodynamic complexity" of the output, in analogy to the Kolmogorov complexity), and the expected heat on the input distribution that minimizes entropy production. For universal TMs, we show for both realizations that the thermodynamic complexity of any desired output is bounded by a constant (unlike the conventional Kolmogorov complexity), while the expected amount of generated heat is infinite. We also show that any computable realization faces a fundamental tradeoff between heat generation, the Kolmogorov complexity of its heat function, and the Kolmogorov complexity of its input-output map. We demonstrate this tradeoff by analyzing the thermodynamics of erasing a long string.

[1]  Kohtaro Tadaki A statistical mechanical interpretation of algorithmic information theory: Total statistical mechanical interpretation based on physical argument , 2010 .

[2]  M. W. Shields An Introduction to Automata Theory , 1988 .

[3]  W. H. Zurek Algorithmic Information Content, Church — Turing Thesis, Physical Entropy, and Maxwell’s Demon , 1991 .

[4]  Dr. Marcus Hutter,et al.  Universal artificial intelligence , 2004 .

[5]  E. Fredkin Digital mechanics: an informational process based on reversible universal cellular automata , 1990 .

[6]  S. Lloyd Ultimate physical limits to computation , 1999, Nature.

[7]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[8]  Marcus Hutter,et al.  On the Existence and Convergence of Computable Universal Priors , 2003, ALT.

[9]  L. Szilard On the decrease of entropy in a thermodynamic system by the intervention of intelligent beings. , 1964, Behavioral science.

[10]  Kenichi Morita,et al.  Theory of Reversible Computing , 2017, Monographs in Theoretical Computer Science. An EATCS Series.

[11]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[12]  Scott Aaronson,et al.  Why Philosophers Should Care About Computational Complexity , 2011, Electron. Colloquium Comput. Complex..

[13]  Alonzo Church,et al.  A. M. Turing. On computable numbers, with an application to the Entscheidungs problcm. Proceedings of the London Mathematical Society , 2 s. vol. 42 (1936–1937), pp. 230–265. , 1937, Journal of Symbolic Logic.

[14]  Gregory J. Chaitin,et al.  Algorithmic Information Theory , 1987, IBM J. Res. Dev..

[15]  Joshua A. Grochow,et al.  The Energetics of Computing in Life and Machines , 2019 .

[16]  Jürgen Schmidhuber,et al.  Algorithmic Theories of Everything , 2000, ArXiv.

[17]  John D. Barrow Kurt Gödel and the Foundations of Mathematics: Gödel and Physics , 2011 .

[18]  Gernot Schaller,et al.  Thermodynamics of stochastic Turing machines , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  L. Goddard Information Theory , 1962, Nature.

[20]  Caves Information and entropy. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[21]  P. Benioff Quantum mechanical hamiltonian models of turing machines , 1982 .

[22]  Mikhail Prokopenko,et al.  On Thermodynamic Interpretation of Transfer Entropy , 2013, Entropy.

[23]  Ämin Baumeler,et al.  Free energy of a general computation. , 2019, Physical review. E.

[24]  C. Jarzynski,et al.  Information Processing and the Second Law of Thermodynamics: An Inclusive Hamiltonian Approach. , 2013, 1308.5001.

[25]  Wolfram,et al.  Undecidability and intractability in theoretical physics. , 1985, Physical review letters.

[26]  Mikhail Prokopenko,et al.  Transfer Entropy and Transient Limits of Computation , 2014, Scientific Reports.

[27]  Zurek,et al.  Algorithmic randomness and physical entropy. , 1989, Physical review. A, General physics.

[28]  R. O. Gandy Andrews P. B.. A transfinite type theory with type variables. Studies in logic and the foundations of mathematics. North-Holland Publishing Company, Amsterdam 1965, xv + 143 pp. , 1968 .

[29]  Paul M. B. Vitányi Conditional Kolmogorov complexity and universal probability , 2013, Theor. Comput. Sci..

[30]  Charles H. Bennett Time/Space Trade-Offs for Reversible Computation , 1989, SIAM J. Comput..

[31]  N. Costa,et al.  Undecidability and incompleteness in classical mechanics , 1991 .

[32]  C. Jarzynski Hamiltonian Derivation of a Detailed Fluctuation Theorem , 1999, cond-mat/9908286.

[33]  Charles H. Bennett,et al.  Notes on Landauer's Principle, Reversible Computation, and Maxwell's Demon , 2002, physics/0210005.

[34]  Christian Van Den Broeck,et al.  Stochastic thermodynamics: A brief introduction , 2013 .

[35]  M. Wolf,et al.  Undecidability of the spectral gap , 2015, Nature.

[36]  David H. Wolpert,et al.  Overview of Information Theory, Computer Science Theory, and Stochastic Thermodynamics for Thermodynamics of Computation , 2018, 1901.00386.

[37]  M. A. Nielsen Computable Functions, Quantum Measurements, and Quantum Dynamics , 1997 .

[38]  Michael Sipser,et al.  Introduction to the Theory of Computation , 1996, SIGA.

[39]  L. Brillouin,et al.  The Negentropy Principle of Information , 1953 .

[40]  Matt Farr,et al.  Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics , 2015 .

[41]  Charles H. Bennett,et al.  The thermodynamics of computation—a review , 1982 .

[42]  Vladimiro Sassone,et al.  Mathematical Structures in Computer Science vol. 14(3). Special issue on Concurrency and Coordination , 2004 .

[43]  Gualtiero Piccinini,et al.  The Physical Church–Turing Thesis: Modest or Bold? , 2011, The British Journal for the Philosophy of Science.

[44]  Martin Ziegler,et al.  Physically-relativized Church-Turing Hypotheses: Physical foundations of computing and complexity theory of computational physics , 2008, Appl. Math. Comput..

[45]  S Turgut Relations between entropies produced in nondeterministic thermodynamic processes. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  A. Alexandrova The British Journal for the Philosophy of Science , 1965, Nature.

[47]  Federica Mandreoli,et al.  Journal of Computer and System Sciences Special Issue on Query Answering on Graph-Structured Data , 2016, Journal of computer and system sciences (Print).

[48]  Andrew F. Rex,et al.  Maxwell's Demon, Entropy, Information, Computing , 1990 .

[49]  Sanjeev Arora,et al.  Computational Complexity: A Modern Approach , 2009 .

[50]  Cristopher Moore,et al.  The Nature of Computation , 2011 .

[51]  John C. Baez,et al.  Algorithmic thermodynamics , 2010, Mathematical Structures in Computer Science.

[52]  Joshua A. Grochow,et al.  Beyond Number of Bit Erasures: New Complexity Questions Raisedby Recently discovered thermodynamic costs of computation , 2018, SIGA.

[53]  A. C. Barato,et al.  Unifying three perspectives on information processing in stochastic thermodynamics. , 2013, Physical review letters.

[54]  Kohtaro Tadaki,et al.  A Generalization of Chaitin's Halting Probability \Omega and Halting Self-Similar Sets , 2002, ArXiv.

[55]  Yonggun Jun,et al.  High-precision test of Landauer's principle in a feedback trap. , 2014, Physical review letters.

[56]  Massimiliano Esposito,et al.  Ensemble and trajectory thermodynamics: A brief introduction , 2014, 1403.1777.

[57]  Scott Aaronson,et al.  NP-complete Problems and Physical Reality , 2005, Electron. Colloquium Comput. Complex..

[58]  Péter Gács,et al.  Thermodynamics of computation and information distance , 1993, STOC.

[59]  Paul M. B. Vitányi,et al.  Shannon Information and Kolmogorov Complexity , 2004, ArXiv.

[60]  R. J. Joenk,et al.  IBM journal of research and development: information for authors , 1978 .

[61]  D. Wolpert,et al.  Dependence of dissipation on the initial distribution over states , 2016, 1607.00956.

[62]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[63]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[64]  Proceedings of the Royal Society (London) , 1906, Science.

[65]  Lloyd Use of mutual information to decrease entropy: Implications for the second law of thermodynamics. , 1989, Physical review. A, General physics.

[66]  J. Eisert,et al.  Extracting dynamical equations from experimental data is NP hard. , 2010, Physical review letters.

[67]  David H. Wolpert,et al.  The stochastic thermodynamics of computation , 2019, Journal of Physics A: Mathematical and Theoretical.

[68]  Jürgen Schmidhuber,et al.  The New AI: General & Sound & Relevant for Physics , 2003, Artificial General Intelligence.

[69]  Gilles Dowek,et al.  The Physical Church-Turing Thesis and the Principles of Quantum Theory , 2011, Int. J. Found. Comput. Sci..

[70]  E. Lutz,et al.  Experimental verification of Landauer’s principle linking information and thermodynamics , 2012, Nature.

[71]  W. Marsden I and J , 2012 .

[72]  Marcus Hutter,et al.  A Philosophical Treatise of Universal Induction , 2011, Entropy.

[73]  T. Sagawa Thermodynamics of Information Processing in Small Systems , 2012 .

[74]  Artemy Kolchinsky,et al.  A space–time tradeoff for implementing a function with master equation dynamics , 2019, Nature Communications.

[75]  U. Seifert Stochastic thermodynamics, fluctuation theorems and molecular machines , 2012, Reports on progress in physics. Physical Society.

[76]  W. H. Zurek,et al.  Thermodynamic cost of computation, algorithmic complexity and the information metric , 1989, Nature.

[77]  Artemy Kolchinsky,et al.  Thermodynamics of computing with circuits , 2018, New Journal of Physics.

[78]  M. Esposito,et al.  Finite-time erasing of information stored in fermionic bits. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[79]  Paul M. Riechers,et al.  Transforming Metastable Memories: The Nonequilibrium Thermodynamics of Computation , 2018, The Energetics of Computing in Life and Machines.

[80]  Robin Gandy,et al.  Church's Thesis and Principles for Mechanisms , 1980 .

[81]  David H. Wolpert,et al.  Extending Landauer's Bound from Bit Erasure to Arbitrary Computation , 2015, 1508.05319.

[82]  Zhi Zhang,et al.  Theoretical Computer Science , 2017, Communications in Computer and Information Science.

[83]  L. Gavrilov,et al.  Journal of Physics: Conference Series 279 (2011) 012019 , 2011 .

[84]  Charles H. Bennett,et al.  Logical reversibility of computation , 1973 .

[85]  S. Ciliberto,et al.  Experiments in Stochastic Thermodynamics: Short History and Perspectives , 2017 .

[86]  Pieter Rein ten Wolde,et al.  The Power of Being Explicit: Demystifying Work, Heat, and Free Energy in the Physics of Computation , 2018, The Energetics of Computing in Life and Machines.

[87]  Christos H. Papadimitriou,et al.  Kurt Godel and the Foundations of Mathematics: Horizons Of Truth , 2014 .

[88]  Moore,et al.  Unpredictability and undecidability in dynamical systems. , 1990, Physical review letters.

[89]  Thermodynamics: Engines and demons , 2014 .

[90]  Gregory J. Chaitin,et al.  On the Length of Programs for Computing Finite Binary Sequences , 1966, JACM.

[91]  T. Sagawa Second Law, Entropy Production, and Reversibility in Thermodynamics of Information , 2017, Energy Limits in Computation.

[92]  Cristian S. Calude,et al.  Natural halting probabilities, partial randomness, and zeta functions , 2006 .

[93]  J. E. Thun Reports on Progress in Physics: vol. 29, parts I and II, 756 pp. (Published by The Institute of Physics and the Physical Society, London 1966) , 1967 .

[94]  J. Koski,et al.  Experimental observation of the role of mutual information in the nonequilibrium dynamics of a Maxwell demon. , 2014, Physical review letters.

[95]  Roberto Bruni,et al.  Models of Computation , 2017, Texts in Theoretical Computer Science. An EATCS Series.

[96]  J. Urry Complexity , 2006, Interpreting Art.

[97]  Susanne Still,et al.  The thermodynamics of prediction , 2012, Physical review letters.

[98]  R. Landauer,et al.  Irreversibility and heat generation in the computing process , 1961, IBM J. Res. Dev..

[99]  Tien D. Kieu,et al.  Computing the non-computable , 2002, ArXiv.

[100]  Péter Gács,et al.  Information Distance , 1998, IEEE Trans. Inf. Theory.

[101]  J. Rissanen A UNIVERSAL PRIOR FOR INTEGERS AND ESTIMATION BY MINIMUM DESCRIPTION LENGTH , 1983 .

[102]  Patrick R. Zulkowski,et al.  Optimal finite-time erasure of a classical bit. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[103]  T. Sagawa Thermodynamic and logical reversibilities revisited , 2013, 1311.1886.

[104]  Masahito Ueda,et al.  Fluctuation theorem with information exchange: role of correlations in stochastic thermodynamics. , 2012, Physical review letters.

[105]  N. Margolus,et al.  Invertible cellular automata: a review , 1991 .

[106]  C. Allen,et al.  Stanford Encyclopedia of Philosophy , 2011 .

[107]  Kanter Undecidability principle and the uncertainty principle even for classical systems. , 1990, Physical review letters.

[108]  Massimiliano Esposito,et al.  Entropy production as correlation between system and reservoir , 2009, 0908.1125.

[109]  Dmitri Petrov,et al.  Universal features in the energetics of symmetry breaking , 2013, Nature Physics.

[110]  M. Mézard,et al.  Journal of Statistical Mechanics: Theory and Experiment , 2011 .

[111]  Karoline Wiesner,et al.  Information-theoretic lower bound on energy cost of stochastic computation , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[112]  T. Sagawa,et al.  Thermodynamics of information , 2015, Nature Physics.

[113]  James B. Hartle,et al.  Computability and physical theories , 1986, 1806.09237.

[114]  Markus P. Mueller Law without law: from observer states to physics via algorithmic information theory , 2017, Quantum.

[115]  O. Maroney Generalizing Landauer's principle. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.