High-Performance Stable Field Emission with Ultralow Turn on Voltage from rGO Conformal Coated TiO2 Nanotubes 3D Arrays

[1]  B. K. Gupta,et al.  Large scale production of three dimensional carbon nanotube pillared graphene network for bi-functional optical properties , 2014 .

[2]  M. Shelke,et al.  High efficiency electron field emission from protruded graphene oxide nanosheets supported on sharp silicon nanowires , 2013 .

[3]  F. F. Dall’Agnol,et al.  Field emission from non-uniform carbon nanotube arrays , 2013, Nanoscale Research Letters.

[4]  Rujia Zou,et al.  ZnO nanorods on reduced graphene sheets with excellent field emission, gas sensor and photocatalytic properties , 2013 .

[5]  J. Warner,et al.  A graphene-based large area surface-conduction electron emission display , 2013 .

[6]  Jaroslav Cihlář,et al.  Roles of graphene oxide in photocatalytic water splitting , 2013 .

[7]  L. Jia,et al.  Influence of anode area and electrode gap on the morphology of TiO 2 nanotubes arrays , 2013 .

[8]  Gengmin Zhang,et al.  TiO₂ nanotip arrays: anodic fabrication and field-emission properties. , 2012, ACS applied materials & interfaces.

[9]  Bo-Hye Kim,et al.  TiO2 nanoparticles loaded on graphene/carbon composite nanofibers by electrospinning for increased photocatalysis , 2012 .

[10]  Q. Xue,et al.  The improvement of the field emission properties from graphene films: Ti transition layer and annealing process , 2012 .

[11]  M. S. El-shall,et al.  Highly efficient electron field emission from graphene oxide sheets supported by nickel nanotip arrays. , 2012, Nano letters.

[12]  B. K. Gupta,et al.  Optical bifunctionality of europium-complexed luminescent graphene nanosheets. , 2011, Nano letters.

[13]  S. Molloi,et al.  Enhanced field emission from clustered TiO2 nanotube arrays , 2011 .

[14]  Qing Zhao,et al.  Well-aligned graphene arrays for field emission displays , 2011 .

[15]  Shiping Huang,et al.  Field-Emission Mechanism of Island-Shaped Graphene–BN Nanocomposite , 2011 .

[16]  Wonbong Choi,et al.  An all-graphene based transparent and flexible field emission device , 2011 .

[17]  Xiong Zhang,et al.  High performance supercapacitors based on reduced graphene oxide in aqueous and ionic liquid electrolytes , 2011 .

[18]  N. Xu,et al.  Field electron emission characteristic of graphene , 2010, 1009.1075.

[19]  V. Bulović,et al.  Doped graphene electrodes for organic solar cells , 2010, Nanotechnology.

[20]  S. Molloi,et al.  Effect of TiO2 nanotube parameters on field emission properties , 2010, Nanotechnology.

[21]  Hua Zhang,et al.  Organic photovoltaic devices using highly flexible reduced graphene oxide films as transparent electrodes. , 2010, ACS nano.

[22]  W. Lu,et al.  Improved synthesis of graphene oxide. , 2010, ACS nano.

[23]  Ho-Gi Kim,et al.  Characterizations of Highly Ordered TiO 2 Nanotube Arrays Obtained by Anodic Oxidation , 2010 .

[24]  B. K. Gupta,et al.  Self-catalytic synthesis, structure and properties of ultra-fine luminescent ZnO nanostructures for field emission applications , 2010, Nanotechnology.

[25]  W. Choi,et al.  Synthesis of Graphene and Its Applications: A Review , 2010 .

[26]  Wei-min Liu,et al.  Field Emission from TiO$_2$/Ti Nanotube Array Films Modified \with Carbon Nanotubes , 2009 .

[27]  T. Feng,et al.  Electron field emission from screen-printed graphene films , 2009, Nanotechnology.

[28]  B. K. Gupta,et al.  Photoluminescence and electron paramagnetic resonance studies of springlike carbon nanofibers , 2009 .

[29]  Q. Gao,et al.  Preparation and field emission properties of titanium polysulfide nanobelt films , 2009 .

[30]  P. Chu,et al.  Synthesis and field emission properties of rutile TiO2 nanowires arrays grown directly on a Ti metal self-source substrate. , 2009, Journal of nanoscience and nanotechnology.

[31]  Yafei Zhang,et al.  Synthesis and field-emission of aligned SnO2 nanotubes arrays , 2009 .

[32]  Yafei Zhang,et al.  Synthesis and field-emission of aligned SnO 2 nanotubes arrays , 2009 .

[33]  Zhongqing Wei,et al.  Reduced graphene oxide molecular sensors. , 2008, Nano letters.

[34]  C. Hernandez-Garcia,et al.  Electron sources for accelerators , 2008, 2207.08875.

[35]  G. Lu,et al.  Electron field emission of a nitrogen-doped TiO2 nanotube array , 2008, Nanotechnology.

[36]  R. Car,et al.  Raman spectra of graphite oxide and functionalized graphene sheets. , 2008, Nano letters.

[37]  G. Yi,et al.  Enhanced field emission properties from well-aligned zinc oxide nanoneedles grown on the Au∕Ti∕n-Si substrate , 2007 .

[38]  M. Naughton,et al.  Aligned Ultralong ZnO Nanobelts and Their Enhanced Field Emission , 2006 .

[39]  T. Kamiya,et al.  Electron field emission from TiO2 nanotube arrays synthesized by hydrothermal reaction , 2006 .

[40]  C. Berger,et al.  Electronic Confinement and Coherence in Patterned Epitaxial Graphene , 2006, Science.

[41]  Jun Chen,et al.  Growth and field-emission property of tungsten oxide nanotip arrays , 2005 .

[42]  Robert J. Barker,et al.  Modern Microwave and Millimeter-Wave Power Electronics , 2005 .

[43]  Y. Zhang,et al.  Field-emission properties of TiO2 nanowire arrays , 2005 .

[44]  J. Dijon,et al.  Carbon Nanotubes For Field Emission Displays , 2003 .

[45]  N. Xu,et al.  Synthesis and field-emission properties of aligned MoO3 nanowires , 2003 .

[46]  Tae Jae Lee,et al.  Field emission from well-aligned zinc oxide nanowires grown at low temperature , 2002 .

[47]  N. Xu,et al.  Needle-shaped silicon carbide nanowires: Synthesis and field electron emission properties , 2002 .

[48]  Sashiro Uemura,et al.  Field emission from carbon nanotubes and its application to electron sources , 1999 .

[49]  K. L. Jensen,et al.  Field emitter arrays for plasma and microwave source applications , 1999 .

[50]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[51]  Fujio Izumi,et al.  Raman spectrum of anatase, TiO2 , 1978 .

[52]  R. Fowler,et al.  Electron Emission in Intense Electric Fields , 1928 .