A COMPREHENSIVE STUDY OF GAMMA-RAY BURST OPTICAL EMISSION. I. FLARES AND EARLY SHALLOW-DECAY COMPONENT

Well-sampled optical light curves of 146 gamma-ray bursts (GRBs) are compiled from the literature. By empirical fitting, we identify eight possible emission components and summarize the results in a “synthetic” light curve. Both optical flare and early shallow-decay components are likely related to long-term central engine activities. We focus on their statistical properties in this paper. Twenty-four optical flares are obtained from 19 GRBs. The isotropic R-band energy is smaller than 1% of Eγ, iso. The relation between the isotropic luminosities of the flares and gamma rays follows LFR, iso∝L1.11 ± 0.27γ, iso. Later flares tend to be wider and dimmer, i.e., wF ∼ tFp/2 and LFR, iso∝[tFp/(1 + z)]−1.15 ± 0.15. The detection probability of the optical flares is much smaller than that of X-ray flares. An optical shallow-decay segment is observed in 39 GRBs. The relation between the break time and break luminosity is a power law, with an index of −0.78 ± 0.08, similar to that derived from X-ray flares. The X-ray and optical breaks are usually chromatic, but a tentative correlation is found. We suggest that similar to the prompt optical emission that tracks γ-rays, the optical flares are also related to the erratic behavior of the central engine. The shallow-decay component is likely related to a long-lasting spinning-down central engine or piling up of flare materials onto the blast wave. Mixing of different emission components may be the reason for the diverse chromatic afterglow behaviors.

[1]  N. Gehrels,et al.  Gamma-Ray Bursts , 2016, Stars and Stellar Processes.

[2]  P. Jakobsson,et al.  Diversity of multiwavelength emission bumps in the GRB 100219A afterglow , 2011, 1112.0744.

[3]  K. L. Page,et al.  The unusual γ-ray burst GRB 101225A from a helium star/neutron star merger at redshift 0.33 , 2011, Nature.

[4]  T. Dwelly,et al.  The dust extinction curves of gamma-ray burst host galaxies , 2011, 1110.3218.

[5]  Bing Zhang,et al.  LORENTZ-FACTOR–ISOTROPIC-LUMINOSITY/ENERGY CORRELATIONS OF GAMMA-RAY BURSTS AND THEIR INTERPRETATION , 2011, 1109.3757.

[6]  B. Robertson,et al.  CONNECTING THE GAMMA RAY BURST RATE AND THE COSMIC STAR FORMATION HISTORY: IMPLICATIONS FOR REIONIZATION AND GALAXY EVOLUTION , 2011, 1109.0990.

[7]  J. Prochaska,et al.  CONSTRAINING GAMMA-RAY BURST EMISSION PHYSICS WITH EXTENSIVE EARLY-TIME, MULTIBAND FOLLOW-UP , 2011, 1107.3352.

[8]  D. A. Kann,et al.  GRB 090426: Discovery of a jet break in a short burst afterglow , 2011, 1105.1312.

[9]  D. A. Kann,et al.  On the nature of the extremely fast optical rebrightening of the afterglow of GRB 081029 , 2011, 1105.0917.

[10]  Bing Zhang Open questions in GRB physics , 2011, 1104.0932.

[11]  J. Sollerman,et al.  Studying the SN-GRB connection with X-shooter: The GRB 100316D / SN 2010bh case , 2011, 1103.5298.

[12]  S. Covino,et al.  A detailed spectral study of GRB 041219A and its host galaxy , 2011, 1103.3663.

[13]  Johan P. U. Fynbo,et al.  The extinction curves of star-forming regions from z = 0.1 to 6.7 using GRB afterglow spectroscopy , 2011, 1102.1469.

[14]  F. Mannucci,et al.  The metallicity of the long GRB hosts and the fundamental metallicity relation of low-mass galaxies , 2010, 1011.4506.

[15]  Bing Zhang,et al.  THE INTERNAL-COLLISION-INDUCED MAGNETIC RECONNECTION AND TURBULENCE (ICMART) MODEL OF GAMMA-RAY BURSTS , 2010, 1011.1197.

[16]  P. Schady,et al.  The nature of "dark" gamma-ray bursts , 2010, 1011.0618.

[17]  C. Guidorzi,et al.  Spectral catalogue of bright gamma-ray bursts detected with the BeppoSAX/GRBM , 2010, 1010.5379.

[18]  K. Asano Extra Spectral Components due to Hadronic Cascade , 2010 .

[19]  W. T. Vestrand,et al.  Optical afterglows of Gamma-Ray Bursts: peaks, plateaus, and possibilities , 2010, 1009.3947.

[20]  Bing Zhang,et al.  A COMPREHENSIVE ANALYSIS OF FERMI GAMMA-RAY BURST DATA. I. SPECTRAL COMPONENTS AND THE POSSIBLE PHYSICAL ORIGINS OF LAT/GBM GRBs , 2010, 1009.3338.

[21]  T. Ohsugi,et al.  Infrared/optical – X-ray simultaneous observations of X-ray flares in GRB 071112C and GRB 080506 , 2010, 1006.0785.

[22]  E. Liang Gamma-ray bursts in the Swift-Fermi era: Confronting data with theory , 2010 .

[23]  R. Margutti,et al.  Lag-luminosity relation in γ-ray burst X-ray flares: A direct link to the prompt emission , 2010, 1004.1568.

[24]  P. Giommi,et al.  Unveiling the origin of X-ray flares in gamma-ray bursts , 2010, 1004.0901.

[25]  Z. Dai,et al.  Jet precession driven by neutrino-cooled disk for gamma-ray bursts , 2010, 1003.4883.

[26]  D. A. Kann,et al.  Optical and near-infrared follow-up observations of four Fermi/LAT GRBs: redshifts, afterglows, energetics, and host galaxies , 2010, 1003.3885.

[27]  W. T. Vestrand,et al.  GRB 081008: FROM BURST TO AFTERGLOW AND THE TRANSITION PHASE IN BETWEEN , 2010, 1002.0581.

[28]  Bing Zhang,et al.  A NEW CLASSIFICATION METHOD FOR GAMMA-RAY BURSTS , 2010, 1001.0598.

[29]  Bing Zhang,et al.  CONSTRAINING GAMMA-RAY BURST INITIAL LORENTZ FACTOR WITH THE AFTERGLOW ONSET FEATURE AND DISCOVERY OF A TIGHT Γ0–Eγ,iso CORRELATION , 2009, 0912.4800.

[30]  N. R. Butler,et al.  Evidence for supernova-synthesized dust from the rising afterglow of GRB 071025 at z∼ 5 , 2009, 0912.2999.

[31]  Y. Urata,et al.  GRB 070518: a gamma-ray burst with optically dim luminosity , 2009, 0911.1014.

[32]  Bing Zhang,et al.  MODELING GAMMA-RAY BURST X-RAY FLARES WITHIN THE INTERNAL SHOCK MODEL , 2009, 0911.0707.

[33]  Nathaniel R. Butler,et al.  THE COSMIC RATE, LUMINOSITY FUNCTION, AND INTRINSIC CORRELATIONS OF LONG GAMMA-RAY BURSTS , 2009, 0910.3341.

[34]  T. Sakamoto,et al.  SPECTRAL LAGS AND THE LAG–LUMINOSITY RELATION: AN INVESTIGATION WITH SWIFT BAT GAMMA-RAY BURSTS , 2009, 0908.2370.

[35]  L. A. Antonelli,et al.  AGILE DETECTION OF DELAYED GAMMA-RAY EMISSION FROM THE SHORT GAMMA-RAY BURST GRB 090510 , 2009, 0908.1908.

[36]  T. Sakamoto,et al.  TESTING THE Epeak–Eiso RELATION FOR GRBs DETECTED BY SWIFT AND SUZAKU-WAM , 2009, 0908.1335.

[37]  D. A. Kann,et al.  LOW-RESOLUTION SPECTROSCOPY OF GAMMA-RAY BURST OPTICAL AFTERGLOWS: BIASES IN THE SWIFT SAMPLE AND CHARACTERIZATION OF THE ABSORBERS , 2009, 0907.3449.

[38]  A. Pe’er,et al.  EVIDENCE OF AN INITIALLY MAGNETICALLY DOMINATED OUTFLOW IN GRB 080916C , 2009, 0904.2943.

[39]  A. Yoldas,et al.  CORRELATED OPTICAL AND X-RAY FLARES IN THE AFTERGLOW OF XRF 071031 , 2009, 0903.1184.

[40]  Bing Zhang,et al.  A COMPREHENSIVE ANALYSIS OF SWIFT/X-RAY TELESCOPE DATA. IV. SINGLE POWER-LAW DECAYING LIGHT CURVES VERSUS CANONICAL LIGHT CURVES AND IMPLICATIONS FOR A UNIFIED ORIGIN OF X-RAYS , 2009, 0902.3504.

[41]  G. Sala,et al.  A STRONG OPTICAL FLARE BEFORE THE RISING AFTERGLOW OF GRB 080129 , 2008, 0811.4291.

[42]  X. Wu,et al.  GRB 060206: hints of precession of the central engine? , 2008, 0808.1172.

[43]  G. Ghisellini,et al.  Peak energy of the prompt emission of long gamma-ray bursts versus their fluence and peak flux , 2008, 0807.4931.

[44]  L. A. Antonelli,et al.  The short GRB 070707 afterglow and its very faint host galaxy , 2008, 0807.1348.

[45]  Ramesh Narayan,et al.  Mass fall-back and accretion in the central engine of gamma-ray bursts , 2008, 0807.0441.

[46]  L. Hanlon,et al.  GRB 070707: the first short gamma-ray burst observed by INTEGRAL , 2008, 0805.2880.

[47]  Martin M. Roth,et al.  GRB 060605: multi-wavelength analysis of the first GRB observed using integral field spectroscopy , 2008, 0804.2457.

[48]  L. A. Antonelli,et al.  THE AFTERGLOWS OF SWIFT-ERA GAMMA-RAY BURSTS. II. TYPE I GRB VERSUS TYPE II GRB OPTICAL AFTERGLOWS , 2008, 0804.1959.

[49]  C. Firmani,et al.  The Epeak-Eiso plane of long Gamma Ray Bursts and selection effects , 2008, 0804.1675.

[50]  E. Rol,et al.  GRB 070306: A Highly Extinguished Afterglow , 2008, 0803.4017.

[51]  W. T. Vestrand,et al.  Taxonomy of gamma‐ray burst optical light curves: identification of a salient class of early afterglows , 2008, 0803.1872.

[52]  Tong Liu,et al.  Constraints on the Mass Accretion Rate of Neutrino-cooled Disks in Gamma-Ray Bursts , 2007, 0712.4107.

[53]  A. J. Levan,et al.  THE AFTERGLOWS OF SWIFT-ERA GAMMA-RAY BURSTS. I. COMPARING PRE-SWIFT AND SWIFT-ERA LONG/SOFT (TYPE II) GRB OPTICAL AFTERGLOWS , 2007, 0712.2186.

[54]  Kazutaka Yamaoka,et al.  Observations of the Prompt Gamma-Ray Emission of GRB 070125 , 2007, 0710.4590.

[55]  Patrick J. McCarthy,et al.  Hubble Space Telescope and Spitzer Observations of the Afterglow and Host Galaxy of GRB 050904 at z = 6.295 , 2007 .

[56]  K. L. Page,et al.  GRB 070311: a direct link between the prompt emission and the afterglow , 2007, 0708.1383.

[57]  Wei Zheng,et al.  A Multiband Study of the Optically Dark GRB 051028 , 2007, 0706.0561.

[58]  Bing Zhang,et al.  A Comprehensive Analysis of Swift XRT Data. II. Diverse Physical Origins of the Shallow Decay Segment , 2007, 0705.1373.

[59]  C. Blake,et al.  The Troublesome Broadband Evolution of GRB 061126: Does a Gray Burst Imply Gray Dust? , 2007, astro-ph/0703538.

[60]  N. Gehrels,et al.  Early afterglow detection in the Swift observations of GRB 050801 , 2007, astro-ph/0703447.

[61]  N. Gehrels,et al.  The First Survey of X-Ray Flares from Gamma-Ray Bursts Observed by Swift: Temporal Properties and Morphology , 2007, astro-ph/0702371.

[62]  P. Schady,et al.  Swift Observations of GRB 070110: An Extraordinary X-Ray Afterglow Powered by the Central Engine , 2007, astro-ph/0702220.

[63]  Tong Liu,et al.  Structure and Luminosity of Neutrino-cooled Accretion Disks , 2007, astro-ph/0702186.

[64]  Bing Zhang Gamma-Ray Bursts in the Swift Era , 2007, astro-ph/0701520.

[65]  A. J. Castro-Tirado,et al.  Optical observations of GRB 060124 afterglow: a case for an injection break , 2007, astro-ph/0701413.

[66]  A. U. Postigo,et al.  Extensive multiband study of the X-ray rich GRB 050408 - A likely off-axis event with an intense energy injection , 2006, astro-ph/0612545.

[67]  N. Gehrels,et al.  Making a Short Gamma-Ray Burst from a Long One: Implications for the Nature of GRB 060614 , 2006, astro-ph/0612238.

[68]  J. Prieto,et al.  Exploring Broadband GRB Behavior during γ-Ray Emission , 2006, astro-ph/0611414.

[69]  J. Prochaska,et al.  The Interstellar Medium of Gamma-Ray Burst Host Galaxies. I. Echelle Spectra of Swift GRB Afterglows , 2006, astro-ph/0611092.

[70]  B.Zhang,et al.  Extreme Properties Of GRB061007: A Highly Energetic OR Highly Collimated Burst? , 2006, astro-ph/0611089.

[71]  D. A. Kann,et al.  GRB 051028: an intrinsically faint gamma-ray burst at high redshift? , 2006, astro-ph/0609654.

[72]  M. Rees,et al.  Thermalization in Relativistic Outflows and the Correlation between Spectral Hardness and Apparent Luminosity in Gamma-Ray Bursts , 2006, astro-ph/0608282.

[73]  D. A. Kann,et al.  The Prompt Optical/Near-Infrared Flare of GRB 050904: The Most Luminous Transient Ever Detected , 2006, astro-ph/0606567.

[74]  G. Ghirlanda,et al.  Clustering of the optical-afterglow luminosities of long gamma-ray bursts , 2006 .

[75]  D. Lamb,et al.  HETE-2 Localizations and Observations of Four Short Gamma-Ray Bursts: GRBs 010326B, 040802, 051211 and 060121 , 2006, astro-ph/0605570.

[76]  C. Firmani,et al.  Discovery of a tight correlation among the prompt emission properties of long gamma-ray bursts , 2006, astro-ph/0605073.

[77]  Tong Liu,et al.  Neutrino-dominated Accretion Models for Gamma-Ray Bursts: Effects of General Relativity and Neutrino Opacity , 2006, astro-ph/0604370.

[78]  G. Stratta,et al.  Continuous optical monitoring during the prompt emission of GRB 060111B , 2006, astro-ph/0604061.

[79]  P. Brown,et al.  Swift Observations of GRB 050603: An Afterglow with a Steep Late-Time Decay Slope , 2006, astro-ph/0603426.

[80]  X. F. Wu,et al.  X-ray Flares from Postmerger Millisecond Pulsars , 2006, Science.

[81]  D. Frail,et al.  The Afterglow, Energetics, and Host Galaxy of the Short-Hard Gamma-Ray Burst 051221a , 2006, astro-ph/0601455.

[82]  D. Proga,et al.  The late time evolution of gamma-ray bursts: ending hyperaccretion and producing flares , 2006, astro-ph/0601272.

[83]  H. Spruit,et al.  The role of kink instability in Poynting-flux dominated jets , 2006, astro-ph/0601172.

[84]  A. Beloborodov,et al.  Neutrino-cooled Accretion Disks around Spinning Black Holes , 2006, astro-ph/0601157.

[85]  N. Gehrels,et al.  The Early X-Ray Emission from GRBs , 2006, astro-ph/0601125.

[86]  D. A. Kann,et al.  Signatures of Extragalactic Dust in Pre-Swift GRB Afterglows , 2005, astro-ph/0512575.

[87]  Bing Zhang,et al.  Flares in Long and Short Gamma-Ray Bursts: A Common Origin in a Hyperaccreting Accretion Disk , 2005, astro-ph/0511506.

[88]  Bing Zhang,et al.  Identification of Two Categories of Optically Bright Gamma-Ray Bursts , 2005, astro-ph/0508510.

[89]  N. Gehrels,et al.  Evidence for a Canonical Gamma-Ray Burst Afterglow Light Curve in the Swift XRT Data , 2005, astro-ph/0508332.

[90]  N. Gehrels,et al.  Physical Processes Shaping Gamma-Ray Burst X-Ray Afterglow Light Curves: Theoretical Implications from the Swift X-Ray Telescope Observations , 2005, astro-ph/0508321.

[91]  A. Panaitescu Models for achromatic light‐curve breaks in gamma‐ray burst afterglows: jets, structured outflows and energy injection , 2005, astro-ph/0506577.

[92]  D. Wei,et al.  Late internal‐shock model for bright X‐ray flares in gamma‐ray burst afterglows and GRB 011121 , 2005, astro-ph/0506155.

[93]  N. Gehrels,et al.  Bright X-ray Flares in Gamma-Ray Burst Afterglows , 2005, Science.

[94]  J. Fynbo,et al.  The red optical afterglow of GRB 030725 , 2005, astro-ph/0505243.

[95]  T. Piran,et al.  Neutrino-dominated Accretion and Supernovae , 2005, astro-ph/0502470.

[96]  Z. Dai,et al.  Gamma-ray bursts: polarization of afterglows from two-component jets , 2004, astro-ph/0412011.

[97]  J. G. Jernigan,et al.  High-Energy Observations of XRF 030723: Evidence for an Off-Axis Gamma-Ray Burst? , 2004, astro-ph/0408453.

[98]  Luigi Piro,et al.  Third Rome Workshop on Gamma-Ray Bursts in the Afterglow Era , 2004 .

[99]  G. Ghirlanda,et al.  The Collimation-corrected Gamma-Ray Burst Energies Correlate with the Peak Energy of Their νFν Spectrum , 2004, astro-ph/0405602.

[100]  Alan A. Wells,et al.  The Swift Gamma-Ray Burst Mission , 2004, astro-ph/0405233.

[101]  Bing Zhang,et al.  Gamma-Ray Bursts: Progress, Problems & Prospects , 2003, astro-ph/0311321.

[102]  D. Lamb,et al.  HETE‐2 Observation of the Extremely Soft X‐Ray Flashes, XRF010213 and XRF020903 , 2003, astro-ph/0309455.

[103]  R. Perna,et al.  Neutrino Trapping and Accretion Models for Gamma-Ray Bursts , 2002, astro-ph/0207319.

[104]  Bing Zhang,et al.  An Analysis of Gamma-Ray Burst Spectral Break Models , 2002, astro-ph/0206158.

[105]  N. Masetti,et al.  Intrinsic spectra and energetics of BeppoSAX Gamma-Ray Bursts with known redshifts , 2002, astro-ph/0205230.

[106]  S. Mineshige,et al.  Can Neutrino-cooled Accretion Disks Be an Origin of Gamma-Ray Bursts? , 2002, astro-ph/0203177.

[107]  A. Panaitescu,et al.  Jet Energy and Other Parameters for the Afterglows of GRB 980703, GRB 990123, GRB 990510, and GRB 991216 Determined from Modeling of Multifrequency Data , 2001 .

[108]  T. Piran,et al.  Accretion Models of Gamma-Ray Bursts , 2001, astro-ph/0103360.

[109]  Bing Zhang,et al.  High-Energy Spectral Components in Gamma-Ray Burst Afterglows , 2001, astro-ph/0103229.

[110]  Bing Zhang,et al.  Gamma-Ray Burst Afterglow with Continuous Energy Injection: Signature of a Highly Magnetized Millisecond Pulsar , 2000, astro-ph/0011133.

[111]  A. Kumar,et al.  Analytic Light Curves of Gamma-Ray Burst Afterglows: Homogeneous versus Wind External Media , 2000, astro-ph/0003246.

[112]  Z. Dai,et al.  Overall Evolution of Jetted Gamma-Ray Burst Ejecta , 1999, astro-ph/9910493.

[113]  Chris L. Fryer,et al.  Hyperaccreting Black Holes and Gamma-Ray Bursts , 1998, astro-ph/9807028.

[114]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[115]  M. Rees,et al.  Multiwavelength Afterglows in Gamma-Ray Bursts: Refreshed Shock and Jet Effects , 1998, astro-ph/9801258.

[116]  F. Daigne,et al.  GAMMA-RAY BURSTS FROM INTERNAL SHOCKS IN A RELATIVISTIC WIND : TEMPORAL AND SPECTRAL PROPERTIES , 1998, astro-ph/9801245.

[117]  T. Piran,et al.  Spectra and Light Curves of Gamma-Ray Burst Afterglows , 1997, astro-ph/9712005.

[118]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[119]  T. Piran,et al.  Can Internal Shocks Produce the Variability in Gamma-Ray Bursts? , 1997, astro-ph/9705013.

[120]  M. Rees,et al.  Optical and Long-Wavelength Afterglow from Gamma-Ray Bursts , 1996, astro-ph/9606043.

[121]  E. Fenimore,et al.  Gamma-Ray Burst Peak Duration as a Function of Energy , 1995, astro-ph/9504075.

[122]  C. Thompson A Model of gamma-ray bursts , 1994 .

[123]  M. Rees,et al.  Unsteady outflow models for cosmological gamma-ray bursts , 1994, astro-ph/9404038.

[124]  V. Usov,et al.  Millisecond pulsars with extremely strong magnetic fields as a cosmological source of γ-ray bursts , 1992 .

[125]  J. Cannizzo,et al.  The Disk Accretion of a Tidally Disrupted Star onto a Massive Black Hole , 1990 .

[126]  R. Blandford,et al.  Electromagnetic extraction of energy from Kerr black holes , 1977 .

[127]  Astronomy & Astrophysics manuscript no. (will be inserted by hand later) Host Galaxies of Gamma-ray Bursts: Spectral Energy Distributions and Internal Extinction. , 2008 .

[128]  Accepted for publication in The Astrophysical Journal Cosmological Implications of the Very High Redshift GRB 050904 , 2006 .

[129]  N. Gehrels Gamma-Ray Bursts , 2006 .

[130]  Accepted to ApJL Preprint typeset using L ATEX style emulateapj v. 6/22/04 LINEARLY POLARIZED X-RAY FLARES FOLLOWING SHORT GAMMA-RAY BURSTS , 2005 .

[131]  E. Fenimore,et al.  GAMMA-RAY BURSTS: 30 YEARS OF DISCOVERY , 2004 .

[132]  Andrew King,et al.  Accretion Power in Astrophysics: Contents , 2002 .

[133]  D. Raine,et al.  Accretion power in astrophysics , 1985 .

[134]  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 A COMPLETE CATALOG OF SWIFT GRB SPECTRA AND DURATIONS: DEMISE OF A PHYSICAL ORIGIN FOR PRE-SWIFT HIGH-ENERGY CORRELATIONS , 2022 .