Global Biobank analyses provide lessons for developing polygenic risk scores across diverse cohorts
暂无分享,去创建一个
Christopher R. Gignoux | Alicia R. Martin | R. Marioni | R. Mägi | M. Daly | U. Thorsteinsdóttir | C. Lajonchere | C. Wijmenga | C. Lindgren | M. Boehnke | M. Kanai | Y. Okada | B. Neale | Xiaoping Zhou | P. Awadalla | J. Vonk | E. Gamazon | Y. Feng | J. Smoller | A. Palotie | P. Palta | H. Snieder | Michael H. Preuss | C. Willer | K. Barnes | I. Surakka | J. Karjalainen | M. Zawistowski | S. Zöllner | L. Franke | S. Medland | M. Kurki | Patrick Deelen | C. Hayward | A. Campbell | S. Sanna | K. Hunt | L. Fritsche | W. Hornsby | R. Loos | K. Hveem | A. Ganna | E. Kenny | Zhengming Chen | Yu Guo | Liming Li | H. Finucane | D. V. van Heel | B. Pasaniuc | R. Trembath | Hailiang Huang | C. Gignoux | J. Uzunović | Ying Wang | Yen-Feng Lin | B. Brumpton | G. D. de Bock | J. Hirbo | N. Rafaels | S. Kerminen | J. Huffman | P. Straub | T. Konuma | B. Wolford | M. Daya | A. Pandit | H. Rasheed | X. Zhong | J. Shavit | M. Favé | K. Läll | S. Chapman | H. Martin | K. Crooks | Jie Zheng | I. Millwood | R. Walters | J. Lv | Kuang Lin | Nathan Ingold | Yi Ding | M. Law | Ruth Johnson | T. Laisk | M. Boezen | A. Bhattacharya | T. Ge | N. Douville | J. Koskela | J. Partanen | A. Richmond | Nancy J. Cox | Chia-Yen Chen | L. Bhatta | S. Namba | V. Lo Faro | J. Shortt | R. Tao | Sarah E. Graham | Huiling Zhao | Chris Griffiths | Ying Wang | T. Gaunt | S. Chavan | Wei-yi Zhou | Koichi Matsuda | S. Patil | S. Macgregor | S. Wicks | G. D. Smith | K. Stefansson | C. Griffiths | Kuan-Han H. Wu | K. Tsuo | S. Finer | D. Whiteman | John Wright | E. Lopera | D. Porteous | Yoshinori Murakami | Daniel H. Geschwind | Catherine M Olsen | E. A. Lopera-Maya | Brett R. Vanderwerff | Kuan-Han Wu | Maasha Mutaamba | Tzu-Ting Chen | Jansonius Nomdo | Judy H. Cho | Kristi Läll | Tzu-Ting Chen | N. Ingold | K. Stefánsson | Anita Pandit | Anne Richmond | Ran Tao | R. Loos | Xue Zhong | Snehal Patil | Juulia J. Partanen | A. Campbell | Judy H Cho | G. H. de Bock
[1] Q. Lu,et al. Quantifying portable genetic effects and improving cross-ancestry genetic prediction with GWAS summary statistics , 2022, bioRxiv.
[2] Alicia R. Martin,et al. Challenges and Opportunities for Developing More Generalizable Polygenic Risk Scores. , 2022, Annual review of biomedical data science.
[3] Alicia R. Martin,et al. Leveraging fine-mapping and multi-population training data to improve cross-population polygenic risk scores , 2022, Nature Genetics.
[4] Fred Y. Shen,et al. Multi-ancestry meta-analysis identifies 2 novel loci associated with ischemic stroke and reveals heterogeneity of effects between sexes and ancestries , 2022, medRxiv.
[5] B. Vilhjálmsson,et al. Portability of 245 polygenic scores when derived from the UK Biobank and applied to 9 ancestry groups from the same cohort. , 2022, American journal of human genetics.
[6] Aaron F. McDaid,et al. A Saturated Map of Common Genetic Variants Associated with Human Height from 5.4 Million Individuals of Diverse Ancestries , 2022 .
[7] Max W. Y. Lam,et al. Improving Polygenic Prediction in Ancestrally Diverse Populations , 2021, Nature Genetics.
[8] M. Pirinen,et al. Leveraging global multi-ancestry meta-analysis in the study of idiopathic pulmonary fibrosis genetics , 2021, medRxiv.
[9] Alicia R. Martin,et al. Genome-wide association meta-analysis identifies novel ancestry-specific primary open-angle glaucoma loci and shared biology with vascular mechanisms and cell proliferation , 2021, medRxiv.
[10] G. Abecasis,et al. The Michigan Genomics Initiative: A biobank linking genotypes and electronic clinical records in Michigan Medicine patients , 2021, medRxiv.
[11] Christopher D. Brown,et al. The power of genetic diversity in genome-wide association studies of lipids , 2021, Nature.
[12] Alicia R. Martin,et al. Multi-ancestry meta-analysis of asthma identifies novel associations and highlights the value of increased power and diversity , 2021, medRxiv.
[13] Wei Zhou,et al. Global Biobank Meta-analysis Initiative: powering genetic discovery across human diseases , 2021, medRxiv.
[14] S. Mccarroll,et al. Prognostic value of polygenic risk scores for adults with psychosis , 2021, Nature Medicine.
[15] Ying Ma,et al. Genetic prediction of complex traits with polygenic scores: a statistical review. , 2021, Trends in genetics : TIG.
[16] Luke R. Lloyd-Jones,et al. Widespread signatures of natural selection across human complex traits and functional genomic categories , 2021, Nature Communications.
[17] Dan J Stein,et al. Low generalizability of polygenic scores in African populations due to genetic and environmental diversity , 2021, bioRxiv.
[18] Elizabeth G. Atkinson,et al. Tractor uses local ancestry to enable inclusion of admixed individuals into GWAS and boost power , 2020, Nature Genetics.
[19] John P. Rice,et al. A Comparison of Ten Polygenic Score Methods for Psychiatric Disorders Applied Across Multiple Cohorts , 2020, Biological Psychiatry.
[20] A. Kulminski,et al. Polygenic risk scores: pleiotropy and the effect of environment , 2020, GeroScience.
[21] J. Witte,et al. Inclusion of variants discovered from diverse populations improves polygenic risk score transferability , 2020, bioRxiv.
[22] E. Vassos,et al. Polygenic risk scores: from research tools to clinical instruments , 2020, Genome Medicine.
[23] Shafi Goldwasser,et al. Secure large-scale genome-wide association studies using homomorphic encryption , 2020, Proceedings of the National Academy of Sciences.
[24] C. Kooperberg,et al. Improving reporting standards for polygenic scores in risk prediction studies , 2020, Nature.
[25] J. Mezey,et al. A Systematic Framework for Assessing the Clinical Impact of Polygenic Risk Scores , 2021, SSRN Electronic Journal.
[26] R. Mägi,et al. Ancestry deconvolution and partial polygenic score can improve susceptibility predictions in recently admixed individuals , 2020, Nature Communications.
[27] J. Haines,et al. Multitrait analysis of glaucoma identifies new risk loci and enables polygenic prediction of disease susceptibility and progression , 2020, Nature Genetics.
[28] P. Visscher,et al. Theoretical and empirical quantification of the accuracy of polygenic scores in ancestry divergent populations , 2020, Nature Communications.
[29] Nilanjan Chatterjee,et al. Case-only analysis of gene-environment interactions using polygenic risk scores , 2019, bioRxiv.
[30] M. Feldman,et al. Analysis of polygenic risk score usage and performance in diverse human populations , 2019, Nature Communications.
[31] Alicia R. Martin,et al. Predicting Polygenic Risk of Psychiatric Disorders , 2019, Biological Psychiatry.
[32] J. Pritchard,et al. Variable prediction accuracy of polygenic scores within an ancestry group , 2019, bioRxiv.
[33] Alicia R. Martin,et al. Clinical use of current polygenic risk scores may exacerbate health disparities , 2019, Nature Genetics.
[34] E. Kenny,et al. Personalized Medicine and the Power of Electronic Health Records , 2019, Cell.
[35] Kristen S Purrington,et al. Polygenic Risk Scores for Prediction of Breast Cancer and Breast Cancer Subtypes , 2018, American Journal of Human Genetics.
[36] Shu Ye,et al. Genomic Risk Prediction of Coronary Artery Disease in 480,000 Adults , 2018, Journal of the American College of Cardiology.
[37] P. Donnelly,et al. The UK Biobank resource with deep phenotyping and genomic data , 2018, Nature.
[38] N. Patterson,et al. Extreme Polygenicity of Complex Traits Is Explained by Negative Selection. , 2019, American journal of human genetics.
[39] Timothy Shin Heng Mak,et al. Tutorial: a guide to performing polygenic risk score analyses , 2018, bioRxiv.
[40] T. Ge,et al. Polygenic prediction via Bayesian regression and continuous shrinkage priors , 2018, bioRxiv.
[41] E. Topol,et al. The personal and clinical utility of polygenic risk scores , 2018, Nature Reviews Genetics.
[42] Nilanjan Chatterjee,et al. Estimation of complex effect-size distributions using summary-level statistics from genome-wide association studies across 32 complex traits , 2018, Nature Genetics.
[43] P. Awadalla,et al. The Canadian Partnership for Tomorrow Project: a pan-Canadian platform for research on chronic disease prevention , 2018, Canadian Medical Association Journal.
[44] Frank Dudbridge,et al. Predictive accuracy of combined genetic and environmental risk scores , 2017, Genetic epidemiology.
[45] Po-Ru Loh,et al. Multi-ethnic polygenic risk scores improve risk prediction in diverse populations , 2016, bioRxiv.
[46] Christopher R. Gignoux,et al. Human demographic history impacts genetic risk prediction across diverse populations , 2016, bioRxiv.
[47] Pak Chung Sham,et al. Polygenic scores via penalized regression on summary statistics , 2016, bioRxiv.
[48] Y. Kamatani,et al. Overview of the BioBank Japan Project: Study design and profile , 2017, Journal of epidemiology.
[49] Arianna M. Gard,et al. Heterogeneity in polygenic scores for common human traits , 2017, bioRxiv.
[50] Gabor T. Marth,et al. A global reference for human genetic variation , 2015, Nature.
[51] R. Mägi,et al. Cohort Profile Cohort Profile : Estonian Biobank of the Estonian Genome Center , University of Tartu , 2015 .
[52] C. Wijmenga,et al. Cohort Profile Cohort Profile : LifeLines , a three-generation cohort study and biobank , 2015 .
[53] Nancy J. Brown,et al. Phenotype-Driven Plasma Biobanking Strategies and Methods , 2015, Journal of personalized medicine.
[54] Carson C Chow,et al. Second-generation PLINK: rising to the challenge of larger and richer datasets , 2014, GigaScience.
[55] M. Daly,et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies , 2014, Nature Genetics.
[56] K. Hveem,et al. COHORT PROFILE Cohort Profile : The HUNT Study , Norway , 2013 .
[57] P. Visscher,et al. A Better Coefficient of Determination for Genetic Profile Analysis , 2012, Genetic epidemiology.
[58] L. Borish,et al. Asthma: a syndrome composed of heterogeneous diseases. , 2008, Annals of allergy, asthma & immunology : official publication of the American College of Allergy, Asthma, & Immunology.