Global Biobank analyses provide lessons for developing polygenic risk scores across diverse cohorts

Christopher R. Gignoux | Alicia R. Martin | R. Marioni | R. Mägi | M. Daly | U. Thorsteinsdóttir | C. Lajonchere | C. Wijmenga | C. Lindgren | M. Boehnke | M. Kanai | Y. Okada | B. Neale | Xiaoping Zhou | P. Awadalla | J. Vonk | E. Gamazon | Y. Feng | J. Smoller | A. Palotie | P. Palta | H. Snieder | Michael H. Preuss | C. Willer | K. Barnes | I. Surakka | J. Karjalainen | M. Zawistowski | S. Zöllner | L. Franke | S. Medland | M. Kurki | Patrick Deelen | C. Hayward | A. Campbell | S. Sanna | K. Hunt | L. Fritsche | W. Hornsby | R. Loos | K. Hveem | A. Ganna | E. Kenny | Zhengming Chen | Yu Guo | Liming Li | H. Finucane | D. V. van Heel | B. Pasaniuc | R. Trembath | Hailiang Huang | C. Gignoux | J. Uzunović | Ying Wang | Yen-Feng Lin | B. Brumpton | G. D. de Bock | J. Hirbo | N. Rafaels | S. Kerminen | J. Huffman | P. Straub | T. Konuma | B. Wolford | M. Daya | A. Pandit | H. Rasheed | X. Zhong | J. Shavit | M. Favé | K. Läll | S. Chapman | H. Martin | K. Crooks | Jie Zheng | I. Millwood | R. Walters | J. Lv | Kuang Lin | Nathan Ingold | Yi Ding | M. Law | Ruth Johnson | T. Laisk | M. Boezen | A. Bhattacharya | T. Ge | N. Douville | J. Koskela | J. Partanen | A. Richmond | Nancy J. Cox | Chia-Yen Chen | L. Bhatta | S. Namba | V. Lo Faro | J. Shortt | R. Tao | Sarah E. Graham | Huiling Zhao | Chris Griffiths | Ying Wang | T. Gaunt | S. Chavan | Wei-yi Zhou | Koichi Matsuda | S. Patil | S. Macgregor | S. Wicks | G. D. Smith | K. Stefansson | C. Griffiths | Kuan-Han H. Wu | K. Tsuo | S. Finer | D. Whiteman | John Wright | E. Lopera | D. Porteous | Yoshinori Murakami | Daniel H. Geschwind | Catherine M Olsen | E. A. Lopera-Maya | Brett R. Vanderwerff | Kuan-Han Wu | Maasha Mutaamba | Tzu-Ting Chen | Jansonius Nomdo | Judy H. Cho | Kristi Läll | Tzu-Ting Chen | N. Ingold | K. Stefánsson | Anita Pandit | Anne Richmond | Ran Tao | R. Loos | Xue Zhong | Snehal Patil | Juulia J. Partanen | A. Campbell | Judy H Cho | G. H. de Bock

[1]  Q. Lu,et al.  Quantifying portable genetic effects and improving cross-ancestry genetic prediction with GWAS summary statistics , 2022, bioRxiv.

[2]  Alicia R. Martin,et al.  Challenges and Opportunities for Developing More Generalizable Polygenic Risk Scores. , 2022, Annual review of biomedical data science.

[3]  Alicia R. Martin,et al.  Leveraging fine-mapping and multi-population training data to improve cross-population polygenic risk scores , 2022, Nature Genetics.

[4]  Fred Y. Shen,et al.  Multi-ancestry meta-analysis identifies 2 novel loci associated with ischemic stroke and reveals heterogeneity of effects between sexes and ancestries , 2022, medRxiv.

[5]  B. Vilhjálmsson,et al.  Portability of 245 polygenic scores when derived from the UK Biobank and applied to 9 ancestry groups from the same cohort. , 2022, American journal of human genetics.

[6]  Aaron F. McDaid,et al.  A Saturated Map of Common Genetic Variants Associated with Human Height from 5.4 Million Individuals of Diverse Ancestries , 2022 .

[7]  Max W. Y. Lam,et al.  Improving Polygenic Prediction in Ancestrally Diverse Populations , 2021, Nature Genetics.

[8]  M. Pirinen,et al.  Leveraging global multi-ancestry meta-analysis in the study of idiopathic pulmonary fibrosis genetics , 2021, medRxiv.

[9]  Alicia R. Martin,et al.  Genome-wide association meta-analysis identifies novel ancestry-specific primary open-angle glaucoma loci and shared biology with vascular mechanisms and cell proliferation , 2021, medRxiv.

[10]  G. Abecasis,et al.  The Michigan Genomics Initiative: A biobank linking genotypes and electronic clinical records in Michigan Medicine patients , 2021, medRxiv.

[11]  Christopher D. Brown,et al.  The power of genetic diversity in genome-wide association studies of lipids , 2021, Nature.

[12]  Alicia R. Martin,et al.  Multi-ancestry meta-analysis of asthma identifies novel associations and highlights the value of increased power and diversity , 2021, medRxiv.

[13]  Wei Zhou,et al.  Global Biobank Meta-analysis Initiative: powering genetic discovery across human diseases , 2021, medRxiv.

[14]  S. Mccarroll,et al.  Prognostic value of polygenic risk scores for adults with psychosis , 2021, Nature Medicine.

[15]  Ying Ma,et al.  Genetic prediction of complex traits with polygenic scores: a statistical review. , 2021, Trends in genetics : TIG.

[16]  Luke R. Lloyd-Jones,et al.  Widespread signatures of natural selection across human complex traits and functional genomic categories , 2021, Nature Communications.

[17]  Dan J Stein,et al.  Low generalizability of polygenic scores in African populations due to genetic and environmental diversity , 2021, bioRxiv.

[18]  Elizabeth G. Atkinson,et al.  Tractor uses local ancestry to enable inclusion of admixed individuals into GWAS and boost power , 2020, Nature Genetics.

[19]  John P. Rice,et al.  A Comparison of Ten Polygenic Score Methods for Psychiatric Disorders Applied Across Multiple Cohorts , 2020, Biological Psychiatry.

[20]  A. Kulminski,et al.  Polygenic risk scores: pleiotropy and the effect of environment , 2020, GeroScience.

[21]  J. Witte,et al.  Inclusion of variants discovered from diverse populations improves polygenic risk score transferability , 2020, bioRxiv.

[22]  E. Vassos,et al.  Polygenic risk scores: from research tools to clinical instruments , 2020, Genome Medicine.

[23]  Shafi Goldwasser,et al.  Secure large-scale genome-wide association studies using homomorphic encryption , 2020, Proceedings of the National Academy of Sciences.

[24]  C. Kooperberg,et al.  Improving reporting standards for polygenic scores in risk prediction studies , 2020, Nature.

[25]  J. Mezey,et al.  A Systematic Framework for Assessing the Clinical Impact of Polygenic Risk Scores , 2021, SSRN Electronic Journal.

[26]  R. Mägi,et al.  Ancestry deconvolution and partial polygenic score can improve susceptibility predictions in recently admixed individuals , 2020, Nature Communications.

[27]  J. Haines,et al.  Multitrait analysis of glaucoma identifies new risk loci and enables polygenic prediction of disease susceptibility and progression , 2020, Nature Genetics.

[28]  P. Visscher,et al.  Theoretical and empirical quantification of the accuracy of polygenic scores in ancestry divergent populations , 2020, Nature Communications.

[29]  Nilanjan Chatterjee,et al.  Case-only analysis of gene-environment interactions using polygenic risk scores , 2019, bioRxiv.

[30]  M. Feldman,et al.  Analysis of polygenic risk score usage and performance in diverse human populations , 2019, Nature Communications.

[31]  Alicia R. Martin,et al.  Predicting Polygenic Risk of Psychiatric Disorders , 2019, Biological Psychiatry.

[32]  J. Pritchard,et al.  Variable prediction accuracy of polygenic scores within an ancestry group , 2019, bioRxiv.

[33]  Alicia R. Martin,et al.  Clinical use of current polygenic risk scores may exacerbate health disparities , 2019, Nature Genetics.

[34]  E. Kenny,et al.  Personalized Medicine and the Power of Electronic Health Records , 2019, Cell.

[35]  Kristen S Purrington,et al.  Polygenic Risk Scores for Prediction of Breast Cancer and Breast Cancer Subtypes , 2018, American Journal of Human Genetics.

[36]  Shu Ye,et al.  Genomic Risk Prediction of Coronary Artery Disease in 480,000 Adults , 2018, Journal of the American College of Cardiology.

[37]  P. Donnelly,et al.  The UK Biobank resource with deep phenotyping and genomic data , 2018, Nature.

[38]  N. Patterson,et al.  Extreme Polygenicity of Complex Traits Is Explained by Negative Selection. , 2019, American journal of human genetics.

[39]  Timothy Shin Heng Mak,et al.  Tutorial: a guide to performing polygenic risk score analyses , 2018, bioRxiv.

[40]  T. Ge,et al.  Polygenic prediction via Bayesian regression and continuous shrinkage priors , 2018, bioRxiv.

[41]  E. Topol,et al.  The personal and clinical utility of polygenic risk scores , 2018, Nature Reviews Genetics.

[42]  Nilanjan Chatterjee,et al.  Estimation of complex effect-size distributions using summary-level statistics from genome-wide association studies across 32 complex traits , 2018, Nature Genetics.

[43]  P. Awadalla,et al.  The Canadian Partnership for Tomorrow Project: a pan-Canadian platform for research on chronic disease prevention , 2018, Canadian Medical Association Journal.

[44]  Frank Dudbridge,et al.  Predictive accuracy of combined genetic and environmental risk scores , 2017, Genetic epidemiology.

[45]  Po-Ru Loh,et al.  Multi-ethnic polygenic risk scores improve risk prediction in diverse populations , 2016, bioRxiv.

[46]  Christopher R. Gignoux,et al.  Human demographic history impacts genetic risk prediction across diverse populations , 2016, bioRxiv.

[47]  Pak Chung Sham,et al.  Polygenic scores via penalized regression on summary statistics , 2016, bioRxiv.

[48]  Y. Kamatani,et al.  Overview of the BioBank Japan Project: Study design and profile , 2017, Journal of epidemiology.

[49]  Arianna M. Gard,et al.  Heterogeneity in polygenic scores for common human traits , 2017, bioRxiv.

[50]  Gabor T. Marth,et al.  A global reference for human genetic variation , 2015, Nature.

[51]  R. Mägi,et al.  Cohort Profile Cohort Profile : Estonian Biobank of the Estonian Genome Center , University of Tartu , 2015 .

[52]  C. Wijmenga,et al.  Cohort Profile Cohort Profile : LifeLines , a three-generation cohort study and biobank , 2015 .

[53]  Nancy J. Brown,et al.  Phenotype-Driven Plasma Biobanking Strategies and Methods , 2015, Journal of personalized medicine.

[54]  Carson C Chow,et al.  Second-generation PLINK: rising to the challenge of larger and richer datasets , 2014, GigaScience.

[55]  M. Daly,et al.  LD Score regression distinguishes confounding from polygenicity in genome-wide association studies , 2014, Nature Genetics.

[56]  K. Hveem,et al.  COHORT PROFILE Cohort Profile : The HUNT Study , Norway , 2013 .

[57]  P. Visscher,et al.  A Better Coefficient of Determination for Genetic Profile Analysis , 2012, Genetic epidemiology.

[58]  L. Borish,et al.  Asthma: a syndrome composed of heterogeneous diseases. , 2008, Annals of allergy, asthma & immunology : official publication of the American College of Allergy, Asthma, & Immunology.