Robust offline topological map estimation using visual loop closures

A framework employing the Student-t pdf is introduced for offline map estimation and robot localization using visual loop closures. The framework uses the Student-t pdf (a) as an observation model of a Hidden Markov Model to represent a topological map (b) to represent the robot motion model. The map and the motion model are calculated in an expectation maximization (EM) framework. We show that the estimator converges at linear time and that the provided accuracy is higher compared to using a conventional Gaussian mixture pdf, due to higher noise resiliency, as well as compared to using a fixed robot motion model. The task is assisted by unsupervised landmark definition through the EM-based clustering of the observations and by scene representation using the complex Zernike moments, which provide rich rotation-invariant information. The validity of the method has been verified experimentally using the input from an omnidirectional camera.

[1]  Wolfram Burgard,et al.  A Probabilistic Approach to Concurrent Mapping and Localization for Mobile Robots , 1998, Auton. Robots.

[2]  Sooyong Park,et al.  Service robot for the elderly , 2009, IEEE Robotics & Automation Magazine.

[3]  Stefan Wermter,et al.  Appearance-based localization for mobile robots using digital zoom and visual compass , 2008, Robotics Auton. Syst..

[4]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[5]  Peter Cheeseman,et al.  On the Representation and Estimation of Spatial Uncertainty , 1986 .

[6]  Sebastian Thrun,et al.  FastSLAM 2.0: An Improved Particle Filtering Algorithm for Simultaneous Localization and Mapping that Provably Converges , 2003, IJCAI.

[7]  Ronald Parr,et al.  DP-SLAM: fast, robust simultaneous localization and mapping without predetermined landmarks , 2003, IJCAI 2003.

[8]  Sotirios Chatzis,et al.  A variational Bayesian methodology for hidden Markov models utilizing Student's-t mixtures , 2011, Pattern Recognit..

[9]  Sebastian Thrun,et al.  Learning Metric-Topological Maps for Indoor Mobile Robot Navigation , 1998, Artif. Intell..

[10]  Sotirios Chatzis,et al.  Robust Sequential Data Modeling Using an Outlier Tolerant Hidden Markov Model , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Peter C. Cheeseman,et al.  Estimating uncertain spatial relationships in robotics , 1986, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[12]  Eduardo Mario Nebot,et al.  Optimization of the simultaneous localization and map-building algorithm for real-time implementation , 2001, IEEE Trans. Robotics Autom..

[13]  Ben J. A. Kröse,et al.  From Sensors to Human Spatial Concepts: An Annotated Data Set , 2008, IEEE Transactions on Robotics.

[14]  Sebastian Thrun,et al.  The Graph SLAM Algorithm with Applications to Large-Scale Mapping of Urban Structures , 2006, Int. J. Robotics Res..

[15]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[16]  Jean-Arcady Meyer,et al.  Fast and Incremental Method for Loop-Closure Detection Using Bags of Visual Words , 2008, IEEE Transactions on Robotics.

[17]  Shy Shoham,et al.  Robust clustering by deterministic agglomeration EM of mixtures of multivariate t-distributions , 2002, Pattern Recognit..

[18]  Hugh F. Durrant-Whyte,et al.  A solution to the simultaneous localization and map building (SLAM) problem , 2001, IEEE Trans. Robotics Autom..

[19]  Nicola Tomatis,et al.  Hybrid, Metric-Topological Representation for Localization and Mapping , 2008, Robotics and Cognitive Approaches to Spatial Mapping.

[20]  Paul Newman,et al.  FAB-MAP: Probabilistic Localization and Mapping in the Space of Appearance , 2008, Int. J. Robotics Res..

[21]  Rui P. Rocha,et al.  T-SLAM: Registering topological and geometric maps for robot localization in large environments , 2008, 2008 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems.

[22]  Hugh F. Durrant-Whyte Uncertain geometry in robotics , 1988, IEEE J. Robotics Autom..

[23]  Karsten Berns,et al.  Use of an Autonomous Mobile Robot for Elderly Care , 2010, 2010 Advanced Technologies for Enhancing Quality of Life.

[24]  Miroslaw Pawlak,et al.  On the Accuracy of Zernike Moments for Image Analysis , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  L. P. Kaelbling,et al.  Learning Geometrically-Constrained Hidden Markov Models for Robot Navigation: Bridging the Topological-Geometrical Gap , 2011, J. Artif. Intell. Res..

[26]  Paul Newman,et al.  Detecting Loop Closure with Scene Sequences , 2007, International Journal of Computer Vision.

[27]  Ben J. A. Kröse,et al.  From images to rooms , 2007, Robotics Auton. Syst..