Flexible Assembly Robotics for Self-optimizing Production

This paper provides an overview of the research results on self-optimizing production systems. Self-optimization strategies developed for assembly systems will be presented focusing on the enhancement of flexibility of assembly processes through a holistic approach regarding product-process-interdependencies. Key elements of the research like automation-friendly product and process design as well as highly-flexible automation equipment and control will be pointed out. This paper then draws a conclusion from that work and derives future research topics for making self-optimizing assembly systems a technology ready to be transferred to industry. The authors identified cooperation technologies, sensor-integration and sensor-guidance as well as meta-level task specification as relevant enablers for self-optimization in assembly systems as they further increase flexibility, autonomy, and cognition --- the pre-requisites for self-optimization. Concept approaches will be described.

[1]  Matthias Weber,et al.  Design of a theoretical holistic system model as base of construction kits for building Plug&Produce-able modular production systems , 2007, Prod. Eng..

[2]  Hubertus Murrenhoff,et al.  Flexible Spann- und Greifsysteme , 2006 .

[3]  H.-Jürgen Rossmann,et al.  Echtzeitfähige, kollisionsvermeidende Bahnplanung für Mehrrobotersysteme , 1993 .

[4]  Ulrike Thomas Automatisierte Programmierung von Robotern für Montageaufgaben , 2008, Ausgezeichnete Informatikdissertationen.

[5]  Neville Hogan,et al.  Impedance Control: An Approach to Manipulation: Part II—Implementation , 1985 .

[6]  Neville Hogan,et al.  Impedance Control: An Approach to Manipulation , 1984, 1984 American Control Conference.

[7]  Bernd Scholz-Reiter,et al.  Autonomous Processes in Assembly Systems , 2007 .

[8]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[9]  Neville Hogan,et al.  Impedance Control: An Approach to Manipulation: Part I—Theory , 1985 .

[10]  Neville Hogan,et al.  Impedance Control: An Approach to Manipulation: Part III—Applications , 1985 .

[11]  Walter Eversheim,et al.  Module und Systeme: Die Kunst liegt in der Strukturierung , 1996 .

[12]  Matthias Weber,et al.  Design of a formal model for the specification of agent platforms based on Plug&Produce-able production systems , 2007, Prod. Eng..

[13]  B. Viergutz,et al.  PPS-Einführung : Erfolgsfaktor Projektmanagement , 1996 .

[14]  Kunikatsu Takase,et al.  A model-based manipulation system with skill-based execution in unstructured environment , 1991, Fifth International Conference on Advanced Robotics 'Robots in Unstructured Environments.

[15]  Gerd Brewka,et al.  Artificial intelligence - a modern approach by Stuart Russell and Peter Norvig, Prentice Hall. Series in Artificial Intelligence, Englewood Cliffs, NJ , 1996, The Knowledge Engineering Review.

[16]  Hartmut Bruhm Untersuchungen zur Handhabung großer Objekte durch Roboter mit kraftschlüssig kooperierenden Armen , 1992 .

[17]  Takashi Suehiro,et al.  Skill-based backprojection for fine motion planning , 1996, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS '96.

[18]  K. Upton,et al.  A modern approach , 1995 .

[19]  Christian Brecher,et al.  Studie Strategien und Trends in der Montagetechnik und -organisation : cluster of excellence integrative production technology for high-wage countries , 2009 .

[20]  Christian Brecher,et al.  Self-optimising flexible assembly systems , 2007 .