Magma ocean fractional crystallization and cumulate overturn in terrestrial planets: Implications for Mars

Crystallization of a magma ocean on a large terrestrial planet that is significantly melted by the energy of accretion may lead to an unstable cumulate density stratification, which may overturn to a stable configuration. Overturn of the initially unstable stratification may produce an early basaltic crust and differentiated mantle reservoirs. Such a stable compositional stratification can have important implications for the planet's subsequent evolution by delaying or suppressing thermal convection and by influencing the distribution of radiogenic heat sources. We use simple models for fractional crystallization of a martian magma ocean, and calculate the densities of the resulting cumulates. While the simple models presented do not include all relevant physical processes, they are able to describe to first order a number of aspects of martian evolution. The models describe the creation of magma source regions that differentiated early in the history of Mars, and present the possibility of an early, brief magnetic field initiated by cold overturned cumulates falling to the core- mantle boundary. In a model that includes the density inversion at about 7.5 GPa, where olivine and pyroxene float in the remaining magma ocean liquids while garnet sinks, cumulate overturn sequesters alumina in the deep martian interior. The ages and compositions of source regions are consistent with SNC meteorite data.

[1]  Kevin Righter,et al.  Determining the composition of the Earth , 2002, Nature.

[2]  John H. Jones A discussion of isotopic systematics and mineral zoning in the shergottites - Evidence for a 180 m.y. igneous crystallization age , 1986 .

[3]  K. Righter,et al.  Magmatic fractionation of Hf and W: constraints on the timing of core formation and differentiation in the Moon and Mars , 2003 .

[4]  John W. Morgan,et al.  Chemical composition of Mars , 1979 .

[5]  M. Mezouar,et al.  Equation of state of Al‐bearing perovskite to lower mantle pressure conditions , 2001 .

[6]  A. Philpotts,et al.  Crystal-Mush Compaction and the Origin of Pegmatitic Segregation Sheets in a Thick Flood-Basalt Flow in the Mesozoic Hartford Basin, Connecticut , 1996 .

[7]  S. Morse Behavior of a perched crystal layer in a magma ocean , 1993 .

[8]  D. Turcotte,et al.  Phase changes and mantle convection , 1971 .

[9]  H. Wiesmann,et al.  Samarium‐neodymium and rubidium‐strontium systematics of nakhlite Governador Valadares , 1999 .

[10]  Jianzhong Zhang,et al.  Thermal equation of state of magnesiowstite (Mg 0.6Fe 0.4)O , 2002 .

[11]  H. Mao,et al.  Structure and Density of FeS at High Pressure and High Temperature and the Internal Structure of Mars , 1995, Science.

[12]  Y. Fei,et al.  Implications of Mars Pathfinder data for the accretion history of the terrestrial planets. , 1998, Science.

[13]  D. C. Presnall,et al.  Melting of enstatite (MgSiO3) from 10 to 16.5 GPa and the forsterite (Mg2SiO4)‐majorite (MgSiO3) eutectic at 16.5 GPa: Implications for the origin of the mantle , 1990 .

[14]  O. Moller Proceedings of the Apollo 11 lunar science conference: LEVINSON, A.A. ed. (1970): 3 Vols. set, 5.420 pp., figs., tables, illustr. Oxford: Pergamon Press. £ 15.00; US$ 40.00; DM 148,-. , 1972 .

[15]  E. Parmentier,et al.  Convective cooling of an initially stably stratified fluid with temperature-dependent viscosity: Implications for the role of solid-state convection in planetary evolution , 2004 .

[16]  Surendra K. Saxena,et al.  Internally consistent thermodynamic data and equilibrium phase relations for compounds in the system MgO‐SiO2 at high pressure and high temperature , 1990 .

[17]  Tilman Spohn,et al.  Thermal history of Mars and the sulfur content of its core , 1990 .

[18]  Y. Fei,et al.  Density profile of an SNC model Martian interior and the moment-of-inertia factor of Mars , 1998 .

[19]  L. E. Nyquist,et al.  Constraints on Martian differentiation processes from RbSr and SmNd isotopic analyses of the basaltic shergottite QUE 94201 , 1997 .

[20]  Bruce D. Marsh,et al.  Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization , 1988 .

[21]  D. Stevenson,et al.  Nonfractional crystallization of a terrestrial magma ocean , 1993 .

[22]  Y. Bottinga,et al.  The viscosity of magmatic silicate liquids; a model calculation , 1972 .

[23]  T. Matsui,et al.  The formation of an impact‐generated H2O atmosphere and its implications for the early thermal history of the Earth , 1985 .

[24]  K. Righter,et al.  Water in the early Earth , 2007 .

[25]  C. Agee,et al.  Static compression and olivine flotation in ultrabasic silicate liquid , 1988 .

[26]  P. Kelemen Reaction Between Ultramafic Rock and Fractionating Basaltic Magma I. Phase Relations, the Origin of Calc-alkaline Magma Series, and the Formation of Discordant Dunite , 1990 .

[27]  Ness,et al.  Global distribution of crustal magnetization discovered by the mars global surveyor MAG/ER experiment , 1999, Science.

[28]  J. Head,et al.  Lunar mare volcanism: Stratigraphy, eruption conditions, and the evolution of secondary crusts , 1992 .

[29]  Anne M. Hofmeister,et al.  Effect of a Hadean terrestrial magma ocean on crust and mantle evolution , 1983 .

[30]  John Whitehead,et al.  Channeling instability of upwelling melt in the mantle , 1995 .

[31]  H. Wiesmann,et al.  Constraints on the petrogenesis of Martian meteorites from the Rb-Sr and Sm-Nd isotopic systematics of the lherzolitic shergottites ALH77005 and LEW88516 , 2002 .

[32]  J W Head,et al.  Internal structure and early thermal evolution of Mars from Mars Global Surveyor topography and gravity. , 2000, Science.

[33]  A. Treiman,et al.  Report of the Workshop on Unmixing the SNCs: Chemical, Isotopic, and Petrologic Components of Martian Meteorites , 2002 .

[34]  V. Solomatov,et al.  Fluid Dynamics of a Terrestrial Magma Ocean , 2000 .

[35]  P. C. Hess,et al.  A model for the thermal and chemical evolution of the Moon's interior: implications for the onset of mare volcanism , 1995 .

[36]  John A. Wood,et al.  Lunar anorthosites and a geophysical model of the moon , 1970 .

[37]  R. Nokes,et al.  A Fluid-Dynamical Study of Crystal Settling in Convecting Magmas , 1989 .

[38]  George Helffrich,et al.  Phase transition Clapeyron slopes and transition zone seismic discontinuity topography , 1994 .

[39]  Campbell,et al.  Viscosity of concentrated suspensions: An approach based on percolation theory. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[40]  Akio Suzuki,et al.  MELTING RELATIONS OF PERIDOTITE AND THE DENSITY CROSSOVER IN PLANETARY MANTLES , 1995 .

[41]  H. R. Shaw Viscosities of magmatic silicate liquids; an empirical method of prediction , 1972 .

[42]  D. Frost,et al.  The effect of Al 2 O 3 on Fe-Mg partitioning between magnesiowüstite and magnesium silicate perovskite , 2002 .

[43]  D. Stevenson Mars' core and magnetism , 2001, Nature.

[44]  Ness,et al.  Magnetic lineations in the ancient crust of mars , 1999, Science.

[45]  H. Waenke,et al.  The bulk composition, mineralogy and internal structure of Mars , 1992 .

[46]  P. Kelemen,et al.  Formation of harzburgite by pervasive melt/rock reaction in the upper mantle , 1992, Nature.

[47]  H. Melosh,et al.  The physics of crystal settling and suspension in a turbulent magma ocean. , 1990 .

[48]  K. Litasov,et al.  Phase relations and melt compositions in CMAS–pyrolite–H2O system up to 25 GPa , 2002 .

[49]  Kevin Righter,et al.  Mechanisms of metal-silicate equilibration in the terrestrial magma ocean , 2003 .

[50]  D. Stevenson,et al.  Entrainment from a bed of particles by thermal convection , 1993 .

[51]  Yutaka Abe,et al.  Thermal and chemical evolution of the terrestrial magma ocean , 1997 .

[52]  John H. Jones,et al.  Oxygen fugacity and geochemical variations in the martian basalts: implications for martian basalt petrogenesis and the oxidation state of the upper mantle of Mars , 2002 .

[53]  Roger Powell,et al.  An internally consistent thermodynamic data set for phases of petrological interest , 1998 .

[54]  Y. Abe Physical state of the very early Earth , 1993 .

[55]  O. Fabrichnaya The phase relations in the FeO-MgO-Al2O3-SiO2 system: assessment of thermodynamic properties and phase equilibria at pressures up to 30 GPa , 1999 .

[56]  Bradford H. Hager,et al.  Melt segregation from partially molten source regions: The importance of melt density and source region size , 1981 .

[57]  A. Boudreau,et al.  Compaction of Igneous Cumulates Part Ii: Compaction and the Development of Igneous Foliations , 1998, The Journal of Geology.

[58]  E. Watson,et al.  Grain‐scale channelization of pores due to gradients in temperature or composition of intergranular fluid or melt , 2002 .

[59]  D. Frost,et al.  Peridotite melting and mineral–melt partitioning of major and minor elements at 22–24.5 GPa , 2002 .

[60]  S. Franck Olivine flotation and crystallization of a global magma ocean , 1992 .

[61]  J. Verhoogen Heat Balance of the Earth's Core , 1937 .

[62]  Erik Asphaug,et al.  Origin of the Moon in a giant impact near the end of the Earth's formation , 2001, Nature.

[63]  Paul H. Warren,et al.  THE MAGMA OCEAN CONCEPT AND LUNAR EVOLUTION , 1985 .

[64]  C. Jaupart,et al.  Compositional convection in a reactive crystalline mush and melt differentiation , 1992 .

[65]  T. Duffy,et al.  Phase stability and density of FeS at high pressures and temperatures: implications for the interior structure of Mars , 2001 .

[66]  K. Mezger,et al.  Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf–W chronometry , 2002, Nature.

[67]  E. Ito,et al.  Garnet–ilmenite–perovskite transitions in the system Mg4Si4O12–Mg3Al2Si3O12 at high pressures and high temperatures: phase equilibria, calorimetry and implications for mantle structure , 2002 .

[68]  S. I. Braginskii An almost axially-symmetrical model of the hydromagnetic dynamo of the earth. I. , 1975 .

[69]  Y. Fei,et al.  Mineralogy of the Martian interior up to core‐mantle boundary pressures , 1997 .

[70]  D. Stevenson,et al.  SUSPENSION IN CONVECTIVE LAYERS AND STYLE OF DIFFERENTIATION OF A TERRESTRIAL MAGMA OCEAN , 1993 .

[71]  A. Halliday,et al.  Hafnium–tungsten chronometry and the timing of terrestrial core formation , 1995, Nature.

[72]  J. Morgan,et al.  Re-Os isotopic evidence for early differentiation of the Martian mantle , 2000 .

[73]  P. Richet,et al.  Rheology of crystal-bearing silicate melts : an experimental study at high viscosities , 1995 .

[74]  R. Clayton,et al.  The Accretion, Composition and Early Differentiation of Mars , 2001 .

[75]  W. Folkner,et al.  Interior structure and seasonal mass redistribution of Mars from radio tracking of Mars Pathfinder. , 1997, Science.

[76]  F. Albarède,et al.  The Lu–Hf isotope geochemistry of shergottites and the evolution of the Martian mantle–crust system , 1999 .

[77]  D. Kring,et al.  Accretion and core formation on Mars: Molybdenum contents of melt inclusion glasses in three SNC meteorites , 1998 .

[78]  K. Suito,et al.  Thermoelastic models of minerals and the composition of the Earth’s lower mantle , 2001 .