Fuzzy Sets in the Social Sciences: An Overview of Related Researches

Pemodelan matematik yang berasaskan set kabur selalunya dikaitkan dengan pengajian dalam bidang kejuruteraan dan sains komputer. Oleh kerana fenomena kekaburan dalam kehidupan dikaitkan dengan kemanusiaan, maka kertas kerja ini membincangkan penggunaan set kabur dalam sains sosial. Satu kajian berkaitan dibentangkan di mana contoh menggunakan model kabur untuk mengukur data kabur daripada soal selidik dikemukakan. Kertas kerja ini turut membincangkan soal selidik yang banyak digunakan dalam penyelidikan sains sosial serta unsur kekaburan yang terlibat. Atribut dan label bagi pembolehubah linguistik daripada soal selidik yang tidak jelas diubah kepada yang ada nilai matematik. Model kabur ini menyediakan pembaikan dalam analisis data serta memberi kesimpulan yang lebih tepat. Kertas kerja ini memberi satu kefahaman baru tentang penggunaan meluas dan sumbangan set kabur dalam sains sosial. Kata kunci: Set kabur, sains sosial, model kabur, pembolehubah linguistik, konjoin kabur A mathematical modelling based on the fuzzy sets theory is synonymous with the fields of engineering and computer science. Since the phenomena of fuzziness in the real world is also closely related with human beings, this paper discusses the application of fuzzy sets in social sciences. An overview of related research is presented, which focuses on an example of social research using a fuzzy model to measure the fuzzy data from a questionnaire. This paper also discusses the questionnaire that is used to collect data by many researchers in social sciences and the elements of fuzziness in it. The vague attributes and labels of a linguistic variable from the questionnaire would be transformed into standard mathematical values. This fuzzy model offers a substantial improvement in data analyses and gives more accurate conclusions. In short, this paper gives a new insight of the vast contribution of fuzzy sets in social sciences. Key words: Fuzzy sets, social sciences, fuzzy model, linguistic variables, fuzzy conjoint

[1]  Lotfi A. Zadeh,et al.  Fuzzy Logic for Business, Finance, and Management , 1997, Advances in Fuzzy Systems - Applications and Theory.

[2]  Lotfi A. Zadeh,et al.  The concept of a linguistic variable and its application to approximate reasoning-III , 1975, Inf. Sci..

[3]  William A. Treadwell Fuzzy Set Theory Movement in the Social Sciences , 1995 .

[4]  M. Kochen APPLICATIONS OF FUZZY SETS IN PSYCHOLOGY , 1975 .

[5]  Paul E. Green,et al.  Conjoint Analysis in Marketing: New Developments with Implications for Research and Practice , 1990 .

[6]  I. Burhan Turksen,et al.  A fuzzy set preference model for consumer choice , 1994 .

[7]  Philippe Cattin,et al.  Commercial Use of Conjoint Analysis: An Update , 1989 .

[8]  I. Burhan Turksen,et al.  A fuzzy set model for market share and preference prediction , 1995 .

[9]  Paul E. Green,et al.  Conjoint Analysis in Marketing Research: New Developments and Directions , 1990 .

[10]  Ranjit Biswas,et al.  An application of fuzzy sets in students' evaluation , 1995, Fuzzy Sets Syst..

[11]  Masao Mukaidono Fuzzy Logic For Beginners , 2001 .

[12]  Charles C. Ragin,et al.  Fuzzy-Set Social Science , 2001 .

[13]  Lotfi A. Zadeh,et al.  The Concepts of a Linguistic Variable and its Application to Approximate Reasoning , 1975 .

[14]  James H. McMillan,et al.  Research in Education: A Conceptual Introduction , 1984 .

[15]  Stephen J. Turner,et al.  A fuzzy set theory approach to periodical binding decisions , 1984, J. Am. Soc. Inf. Sci..

[16]  Feng Chu Quantitative evaluation of university teaching quality—an application of fuzzy set and approximate reasoning , 1990 .

[17]  L. Cohen,et al.  Research Methods in Education , 1980 .

[18]  T. Pavlidis,et al.  Fuzzy sets and their applications to cognitive and decision processes , 1977 .

[19]  Mehmed Kantardzic,et al.  Data Mining: Concepts, Models, Methods, and Algorithms , 2002 .