Modeling and design of all-dielectric cylindrical nanoantennas

Abstract. We theoretically demonstrate ultradirectional, azimuthally symmetric forward scattering by dielectric cylindrical nanoantennas for futuristic nanophotonic applications in visible and near-infrared regions. Electric and magnetic dipoles have been optically induced in the nanocylinders at the resonant wavelengths. The cylindrical dielectric nanoparticles exhibit complete suppression of backward scattering and improved forward scattering at first generalized Kerker’s condition. The influence of gap between nanocylinder elements on the scattering pattern of the homodimers has been demonstrated. Further, for highly directive applications, a linear chain of ultradirectional cylindrical nanoantenna array has been proposed.

[1]  M. Garcia-Parajo,et al.  Optical antennas focus in on biology , 2008 .

[2]  Naomi J. Halas,et al.  Photodetection with Active Optical Antennas , 2011, Science.

[3]  W. Steen Absorption and Scattering of Light by Small Particles , 1999 .

[4]  B. Hecht,et al.  Principles of nano-optics , 2006 .

[5]  Yuri S. Kivshar,et al.  All-dielectric optical nanoantennas. , 2012, Optics express.

[6]  D. Sikdar,et al.  Optically resonant magneto-electric cubic nanoantennas for ultra-directional light scattering , 2015 .

[7]  Boris N. Chichkov,et al.  Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation , 2011 .

[8]  J. Sáenz,et al.  Angle-suppressed scattering and optical forces on submicrometer dielectric particles. , 2012, Journal of the Optical Society of America. A, Optics, image science, and vision.

[9]  W. Withayachumnankul,et al.  Mechanically Tunable Dielectric Resonator Metasurfaces at Visible Frequencies. , 2016, ACS nano.

[10]  Nicolas Bonod,et al.  Boosting the directivity of optical antennas with magnetic and electric dipolar resonant particles. , 2012, Optics express.

[11]  Boris N. Chichkov,et al.  Multipole analysis of light scattering by arbitrary-shaped nanoparticles on a plane surface , 2013 .

[12]  D. Sikdar,et al.  Optimized gold nanoshell ensembles for biomedical applications , 2013, Nanoscale Research Letters.

[13]  C. Lee Giles,et al.  Electromagnetic scattering by magnetic spheres , 1983 .

[14]  J. Aizpurua,et al.  Strong magnetic response of submicron silicon particles in the infrared. , 2010, Optics express.

[15]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[16]  M. Nieto-Vesperinas,et al.  Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces , 2011, 1104.3363.

[17]  Boris N. Chichkov,et al.  Optical response features of Si-nanoparticle arrays , 2010 .

[18]  Kin Hung Fung,et al.  Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting. , 2012, Nano letters.

[19]  N. Halas,et al.  Nano-optics from sensing to waveguiding , 2007 .

[20]  I. Brener,et al.  Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks. , 2013, ACS nano.

[21]  H. G. Jerrard,et al.  Handbook of optical constant of solids: Edited by E.D. Palik Academic Press, 1985, pp xviii + 804, £110, $110 , 1986 .

[22]  Wei Liu,et al.  Broadband unidirectional scattering by magneto-electric core-shell nanoparticles. , 2012, ACS nano.

[23]  L. Novotný,et al.  Antennas for light , 2011 .