A note on compact graphs

An undirected simple graph G is called compact iff its adjacency matrix A is such that the polytope S(A) of doubly stochastic matrices X which commute with A has integral-valued extremal points only. We show that the isomorphism problem for compact graphs is polynomial. Furthermore, we prove that if a graph G is compact, then a certain naive polynomial heuristic applied to G and any partner G? decides correctly whether G and G? are isomorphic or not. In the last section we discuss some compactness preserving operations on graphs.