Gaussian Process Latent Variable Alignment Learning

We present a model that can automatically learn alignments between high-dimensional data in an unsupervised manner. Our proposed method casts alignment learning in a framework where both alignment and data are modelled simultaneously. Further, we automatically infer groupings of different types of sequences within the same dataset. We derive a probabilistic model built on non-parametric priors that allows for flexible warps while at the same time providing means to specify interpretable constraints. We demonstrate the efficacy of our approach with superior quantitative performance to the state-of-the-art approaches and provide examples to illustrate the versatility of our model in automatic inference of sequence groupings, absent from previous approaches, as well as easy specification of high level priors for different modalities of data.

[1]  Anuj Srivastava,et al.  Statistical Modeling of Curves Using Shapes and Related Features , 2012 .

[2]  Carl E. Rasmussen,et al.  Warped Gaussian Processes , 2003, NIPS.

[3]  Tomoko Matsui,et al.  A Kernel for Time Series Based on Global Alignments , 2006, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[4]  Eamonn J. Keogh,et al.  Derivative Dynamic Time Warping , 2001, SDM.

[5]  Shiguang Shan,et al.  Generalized Unsupervised Manifold Alignment , 2014, NIPS.

[6]  John P. Cunningham,et al.  Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population activity , 2008, NIPS.

[7]  S Roberts,et al.  Gaussian processes for time-series modelling , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[8]  Peter J. Ramadge,et al.  Kernel Hyperalignment , 2012, NIPS.

[9]  J. Marron,et al.  Registration of Functional Data Using Fisher-Rao Metric , 2011, 1103.3817.

[10]  Mubarak Shah,et al.  Macro-class Selection for Hierarchical k-NN Classification of Inertial Sensor Data , 2012, PECCS.

[11]  Michalis K. Titsias,et al.  Variational Learning of Inducing Variables in Sparse Gaussian Processes , 2009, AISTATS.

[12]  Frans van den Berg,et al.  An exploratory chemometric study of 1H NMR spectra of table wines , 2006 .

[13]  Damien Garreau,et al.  Metric Learning for Temporal Sequence Alignment , 2014, NIPS.

[14]  Tomaso A. Poggio,et al.  Regularization Networks and Support Vector Machines , 2000, Adv. Comput. Math..

[15]  Fernando De la Torre,et al.  Canonical Time Warping for Alignment of Human Behavior , 2009, NIPS.

[16]  Christopher K. I. Williams,et al.  Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning) , 2005 .

[17]  David J. Fleet,et al.  This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE Gaussian Process Dynamical Model , 2007 .

[18]  J. S. Marron,et al.  Functional Data Analysis of Amplitude and Phase Variation , 2015, 1512.03216.

[19]  Jovan Popovic,et al.  Style translation for human motion , 2005, ACM Trans. Graph..

[20]  Rushil Anirudh,et al.  Elastic functional coding of human actions: From vector-fields to latent variables , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[21]  Neil D. Lawrence,et al.  Probabilistic Non-linear Principal Component Analysis with Gaussian Process Latent Variable Models , 2005, J. Mach. Learn. Res..

[22]  Donald J. Berndt,et al.  Using Dynamic Time Warping to Find Patterns in Time Series , 1994, KDD Workshop.

[23]  George Trigeorgis,et al.  Deep Canonical Time Warping , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[24]  George Trigeorgis,et al.  Deep Canonical Time Warping for Simultaneous Alignment and Representation Learning of Sequences , 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Miguel Lázaro-Gredilla,et al.  Bayesian Warped Gaussian Processes , 2012, NIPS.

[26]  Neil D. Lawrence,et al.  Hierarchical Gaussian process latent variable models , 2007, ICML '07.

[27]  Marco Cuturi,et al.  Fast Global Alignment Kernels , 2011, ICML.

[28]  Andrea Baisero,et al.  On a Family of Decomposable Kernels on Sequences , 2015, ArXiv.

[29]  Radford M. Neal,et al.  Multiple Alignment of Continuous Time Series , 2004, NIPS.

[30]  Maneesh Sahani,et al.  Temporal alignment and latent Gaussian process factor inference in population spike trains , 2018, bioRxiv.

[31]  David J. Fleet,et al.  Priors for people tracking from small training sets , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[32]  Aki Vehtari,et al.  Gaussian processes with monotonicity information , 2010, AISTATS.

[33]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[34]  K. Mardia,et al.  Statistical Shape Analysis , 1998 .

[35]  Fernando De la Torre,et al.  Generalized Canonical Time Warping , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[36]  Sridhar Mahadevan,et al.  Manifold Warping: Manifold Alignment over Time , 2012, AAAI.

[37]  Meinard Müller,et al.  Information retrieval for music and motion , 2007 .

[38]  Wei Wu,et al.  Signal Estimation Under Random Time-Warpings and Nonlinear Signal Alignment , 2011, NIPS.

[39]  Fernando De la Torre,et al.  Generalized time warping for multi-modal alignment of human motion , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[40]  Jan Kautz,et al.  Learning a manifold of fonts , 2014, ACM Trans. Graph..

[41]  Wei Wu,et al.  Generative models for functional data using phase and amplitude separation , 2012, Comput. Stat. Data Anal..

[42]  Aaron Hertzmann,et al.  Style-based inverse kinematics , 2004, ACM Trans. Graph..

[43]  Bryan R. Conroy,et al.  A Common, High-Dimensional Model of the Representational Space in Human Ventral Temporal Cortex , 2011, Neuron.