Conformable derivative approach to anomalous diffusion

Abstract By using a new derivative with fractional order, referred to conformable derivative, an alternative representation of the diffusion equation is proposed to improve the modeling of anomalous diffusion. The analytical solutions of the conformable derivative model in terms of Gauss kernel and Error function are presented. The power law of the mean square displacement for the conformable diffusion model is studied invoking the time-dependent Gauss kernel. The parameters related to the conformable derivative model are determined by Levenberg–Marquardt method on the basis of the experimental data of chloride ions transportation in reinforced concrete. The data fitting results showed that the conformable derivative model agrees better with the experimental data than the normal diffusion equation. Furthermore, the potential application of the proposed conformable derivative model of water flow in low-permeability media is discussed.

[1]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[2]  Roman Loser,et al.  Chloride resistance of concrete and its binding capacity: Comparison between experimental results and thermodynamic modeling , 2010 .

[3]  Igor M. Sokolov,et al.  Models of anomalous diffusion in crowded environments , 2012 .

[4]  E. Barkai,et al.  Ergodic properties of fractional Brownian-Langevin motion. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  L. Mishnaevsky,et al.  Deformation analysis of polymers composites: rheological model involving time-based fractional derivative , 2017 .

[6]  Boris Baeumer,et al.  Particle tracking for time-fractional diffusion. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  Varsha Daftardar-Gejji,et al.  On calculus of local fractional derivatives , 2002 .

[8]  Michael D. A. Thomas,et al.  Modelling chloride diffusion in concrete: Effect of fly ash and slag , 1999 .

[9]  Jose Alvarez-Ramirez,et al.  A fractional-order Maxwell model for non-Newtonian fluids , 2017 .

[10]  Kewei Zhang,et al.  On the local fractional derivative , 2010 .

[11]  Necati Özdemir,et al.  The Dirichlet problem of a conformable advection-diffusion equation , 2017 .

[12]  Leon Mishnaevsky,et al.  A fractional derivative approach to full creep regions in salt rock , 2013 .

[13]  Hongwei Zhou,et al.  A creep constitutive model for salt rock based on fractional derivatives , 2011 .

[14]  M. Ezzat,et al.  On fractional thermoelasticity , 2011 .

[15]  T. Kaczorek,et al.  Fractional Linear Systems and Electrical Circuits , 2014 .

[16]  Delfim F. M. Torres,et al.  A Conformable Fractional Calculus on Arbitrary Time Scales , 2015, 1505.03134.

[17]  Alexey Zhokh,et al.  Asymptotic Green’s functions for time-fractional diffusion equation and their application for anomalous diffusion problem , 2017 .

[18]  Weihua Deng,et al.  Remarks on fractional derivatives , 2007, Appl. Math. Comput..

[19]  Manuel Duarte Ortigueira,et al.  Fractional Calculus for Scientists and Engineers , 2011, Lecture Notes in Electrical Engineering.

[20]  Thabet Abdeljawad,et al.  On conformable fractional calculus , 2015, J. Comput. Appl. Math..

[21]  Wen Chen,et al.  A variable-order time-fractional derivative model for chloride ions sub-diffusion in concrete structures , 2012 .

[22]  Anwar Khitab,et al.  Predictive model for chloride penetration through concrete , 2005 .

[23]  Ralf Metzler,et al.  Scaled Brownian motion: a paradoxical process with a time dependent diffusivity for the description of anomalous diffusion. , 2014, Physical chemistry chemical physics : PCCP.

[24]  M. Sababheh,et al.  A new definition of fractional derivative , 2014, J. Comput. Appl. Math..

[25]  D. Anderson,et al.  Properties of the Katugampola fractional derivative with potential application in quantum mechanics , 2015 .

[26]  M. Fenaux,et al.  Study of chloride penetration in concretes exposed to high-mountain weather conditions with presence of deicing salts , 2016 .

[27]  Abdon Atangana,et al.  Derivative with a New Parameter: Theory, Methods and Applications , 2015 .

[28]  Wen Chen,et al.  Time-fractional derivative model for chloride ions sub-diffusion in reinforced concrete , 2017 .

[29]  Igor M. Sokolov,et al.  Fractional diffusion in inhomogeneous media , 2005 .

[30]  Olaniyi Samuel Iyiola,et al.  On the analytical solutions of the system of conformable time-fractional Robertson equations with 1-D diffusion , 2017 .

[31]  M. Caputo,et al.  Fractional derivatives in the transport of drugs across biological materials and human skin , 2016 .

[32]  M. Luo,et al.  General conformable fractional derivative and its physical interpretation , 2017, Calcolo.

[33]  R. Gorenflo,et al.  Fractional diffusion: probability distributions and random walk models , 2002 .

[34]  M. J. Lazo,et al.  Fractional derivative models for atmospheric dispersion of pollutants , 2017, 1702.06345.

[35]  Andrey G. Cherstvy,et al.  Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. , 2014, Physical chemistry chemical physics : PCCP.

[36]  Won Sang Chung,et al.  Fractional Newton mechanics with conformable fractional derivative , 2015, J. Comput. Appl. Math..

[37]  Erkan Nane,et al.  Stochastic solutions of Conformable fractional Cauchy problems , 2016, 1606.07010.

[38]  Igor M. Sokolov,et al.  Field-induced dispersion in subdiffusion. , 2006 .

[39]  Y. Povstenko Linear Fractional Diffusion-Wave Equation for Scientists and Engineers , 2015 .