A calorimetric study of the chymotrypsinogen family of proteins.

[1]  R. Biltonen,et al.  Studies of the chymotrypsinogen A family of proteins. 8. Thermodynamic analysis of transition I of the methionine sulfoxide derivatives of alpha-chymotrypsin. , 1971, Journal of the American Chemical Society.

[2]  F. E. Karasz,et al.  Heat of denaturation of lysozyme , 1970, Biopolymers.

[3]  T. Tsong,et al.  A calorimetric study of thermally induced conformational transitions of ribonuclease A and certain of its derivatives. , 1970, Biochemistry.

[4]  W. Jackson,et al.  Thermodynamics of protein denaturation. A calorimetric study of the reversible denaturation of chymotrypsinogen and conclusions regarding the accuracy of the two-state approximation. , 1970, Biochemistry.

[5]  N. Xuong,et al.  Chymotrypsinogen: 2,5-Å crystal structure, comparison with α-chymotrypsin, and implications for zymogen activation , 1970 .

[6]  J. F. Foster,et al.  Reversible boundary spreading as a criterion of the microheterogeneity of plasma albumins. , 1970, Biochemistry.

[7]  E. Grunwald,et al.  Temperature dependence of .DELTA.-Cp.deg. for the self-ionization of water and for the acid dissociation of acetic acid and benzoic acid in water , 1970 .

[8]  D. Shiao,et al.  Calorimetric investigations of the binding of inhibitors to alpha-chymotrypsin. I. The enthalpy of dilution of alpha-chymotrypsin and of proflavin, and the enthalpy of binding of indole, N-acetyl-D-tryptophan, and proflavin to alpha-chymotrypsin. , 1969, Biochemistry.

[9]  R. Biltonen,et al.  Studies of the chymotrypsinogen family of proteins. VI. Characterization of the conformational variation of chymotrypsin. , 1969, Journal of the American Chemical Society.

[10]  D. Koshland,et al.  Carboxyl group modification in chymotrypsin and chymotrypsinogen. , 1969, Journal of molecular biology.

[11]  J. W. Stout,et al.  Heat capacities from 11 to 305 degrees K and entropies of hydrated and anhydrous bovine zinc insulin and bovine chymotrypsinogen A. Entropy change for formation of peptide bonds. , 1969, The Journal of biological chemistry.

[12]  H. Bull,et al.  Protein hydration. II. Specific heat of egg albumin. , 1968, Archives of biochemistry and biophysics.

[13]  M. Lazdunski,et al.  Physico‐Chemical Properties of Bovine Chymotrypsinogen B , 1968 .

[14]  H. Scheraga,et al.  Structural studies of ribonuclease. XXV. Enthalpy changes accompanying acid denaturation. , 1966, Journal of the American Chemical Society.

[15]  R. Biltonen,et al.  Validity of the “two‐state” hypothesis for conformational transitions of proteins , 1966, Biopolymers.

[16]  R. Biltonen,et al.  Variability of State A for Some Members of the Chymotrypsinogen Family of Proteins1 , 1965 .

[17]  J. Brandts The Thermodynamics of Protein Denaturation. II. A Model of Reversible Denaturation and Interpretations Regarding the Stability of Chymotrypsinogen , 1964 .

[18]  G. Kresheck,et al.  Calorimetric Studies of the Hydrophobic Nature of Several Protein Constituents and Ovalbumin in Water and in Aqueous Urea , 1964 .

[19]  H. Schachter,et al.  PREFERENTIAL OXIDATION OF THE METHIONINE RESIDUE NEAR THE ACTIVE SITE OF CHYMOTRYPSIN. , 1964, The Journal of biological chemistry.

[20]  R. Lumry,et al.  THE REVERSIBLE THERMAL DENATURATION OF CHYMOTRYPSINOGEN.1 I. EXPERIMENTAL CHARACTERIZATION , 1963 .

[21]  M. L. Bender,et al.  The spectrophotometric determination of the operational normality of an alpha-chymotrypsin solution. , 1961, The Journal of biological chemistry.

[22]  G. Schwert,et al.  THE REVERSIBLE HEAT DENATURATION OF CHYMOTRYPSINOGEN , 1951, The Journal of general physiology.

[23]  S. Gronowitz,et al.  Design and Testing of a Micro Reaction Calorimeter. , 1968 .

[24]  Ingemar Wadsö,et al.  A Flow Micro Reaction Calorimeter. , 1968 .