Independence of Hyperlogarithms over Function Fields via Algebraic Combinatorics

We obtain a necessary and sufficient condition for the linear independence of solutions of differential equations for hyperlogarithms. The key fact is that the multiplier (i.e. the factor M in the differential equation dS = MS) has only singularities of first order (Fuchsian-type equations) and this implies that they freely span a space which contains no primitive. We give direct applications where we extend the property of linear independence to the largest known ring of coefficients.

[1]  Joris van der Hoeven,et al.  Shuffle algebra and polylogarithms , 2000, Discret. Math..

[2]  M. Fliess Réalisation locale des systèmes non linéaires, algèbres de Lie filtrées transitives et séries génératrices non commutatives , 1983 .

[3]  Jean Berstel,et al.  Rational series and their languages , 1988, EATCS monographs on theoretical computer science.

[4]  W. Magnus On the exponential solution of differential equations for a linear operator , 1954 .

[5]  Marius van der Put,et al.  Galois Theory of Linear Differential Equations , 2012 .

[6]  J. A. Lappo-Danilevsky Mémoires sur la théorie des systémes des équations différentielles linéaires , 1954 .

[7]  Gerd Wechsung Functional equations of hyperlogarithms , 1991 .

[8]  C. Reutenauer Free Lie Algebras , 1993 .

[9]  Leonard Lewin,et al.  Polylogarithms and Associated Functions , 1981 .

[10]  R. Feynman An Operator calculus having applications in quantum electrodynamics , 1951 .

[11]  Don Zagier,et al.  Special values and functional equations of polylogarithms , 1991 .

[12]  Nicolas Bourbaki,et al.  Theory of sets , 1968 .

[13]  M. Fliess,et al.  Fonctionnelles causales non linaires et indtermines non commutatives , 1981 .

[14]  J. F.,et al.  The Radiation Theories of Tomonaga , Schwinger , and Feynman , 2011 .

[15]  Kuo-Tsai Chen,et al.  Iterated path integrals , 1977 .

[16]  L. Lewin Structural Properties of Polylogarithms , 1991 .

[17]  Christophe Reutenauer,et al.  Un critère de rationalité provenant de la géométrie non commutative , 1997 .