An integrated assessment of INDCs under Shared Socioeconomic Pathways: an implementation of C3IAM

[1]  T. Rutherford,et al.  The Paris Agreement and next steps in limiting global warming , 2017, Climatic Change.

[2]  W. Lutz,et al.  The human core of the shared socioeconomic pathways: Population scenarios by age, sex and level of education for all countries to 2100 , 2017, Global environmental change : human and policy dimensions.

[3]  James A. Edmonds,et al.  Economic tools to promote transparency and comparability in the Paris Agreement , 2016 .

[4]  J. Rogelj,et al.  Paris Agreement climate proposals need a boost to keep warming well below 2 °C , 2016, Nature.

[5]  Valentina Bosetti,et al.  The WITCH 2016 Model - Documentation and Implementation of the Shared Socioeconomic Pathways , 2016 .

[6]  Teresa Ribera,et al.  Global adaptation after Paris , 2016, Science.

[7]  James R. McFarland,et al.  Can Paris pledges avert severe climate change? , 2015, Science.

[8]  Yi-Ming Wei,et al.  Climate policy modeling: An online SCI-E and SSCI based literature review , 2015 .

[9]  James R. McFarland,et al.  The contribution of Paris to limit global warming to 2 °C , 2015 .

[10]  T. Fransen,et al.  Interpreting INDCs: Assessing Transparency of Post-2020 Greenhouse Gas Emissions Targets for 8 Top-Emitting Economies , 2015 .

[11]  Benjamin Leon Bodirsky,et al.  Land-use protection for climate change mitigation , 2014 .

[12]  Yi-Ming Wei,et al.  Responsibility accounting in carbon allocation : A global perspective , 2014 .

[13]  Fang Wang,et al.  An overview of BCC climate system model development and application for climate change studies , 2014, Journal of Meteorological Research.

[14]  Sonja J. Vermeulen,et al.  Climate change, food security and small-scale producers: Analysis of findings of the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC) , 2014 .

[15]  E. Schmid,et al.  Climate change mitigation through livestock system transitions , 2014, Proceedings of the National Academy of Sciences.

[16]  T. Carter,et al.  Climate and socio-economic scenarios for climate change research and assessment: reconciling the new with the old , 2014, Climatic Change.

[17]  Valeria Jana Schwanitz,et al.  Evaluating integrated assessment models of global climate change , 2013, Environ. Model. Softw..

[18]  Yi-Ming Wei,et al.  Review of proposals for an Agreement on Future Climate Policy: Perspectives from the responsibilities for GHG reduction , 2013 .

[19]  Li Zhang,et al.  Global carbon budgets simulated by the Beijing Climate Center Climate System Model for the last century , 2013 .

[20]  R. Tol Targets for global climate policy: an overview , 2013 .

[21]  C. Schmitz The future of food supply in a constraining environment , 2013 .

[22]  Philippe Ciais,et al.  The Nexus Land-Use model version 1.0, an approach articulating biophysical potentials and economic dynamics to model competition for land-use , 2012 .

[23]  Brian C. O'Neill,et al.  The Need for and Use of Socio-Economic Scenarios for Climate Change Analysis , 2012 .

[24]  Christoph Schmitz,et al.  Trading more food: Implications for land use, greenhouse gas emissions, and the food system , 2012 .

[25]  K. Calvin,et al.  GCAM 3.0 Agriculture and Land Use: Data Sources and Methods , 2011 .

[26]  Jennifer Koch,et al.  An integrated approach to modelling land-use change on continental and global scales , 2011, Environ. Model. Softw..

[27]  Jennifer Koch,et al.  Evaluation of an integrated land use change model including a scenario analysis of land use change for continental Africa , 2011, Environ. Model. Softw..

[28]  G. Berndes,et al.  How much land is needed for global food production under scenarios of dietary changes and livestock productivity increases in 2030 , 2010 .

[29]  Thomas W. Hertel,et al.  Development of the GTAP Version 7 Land Use Data Base , 2010 .

[30]  John F. B. Mitchell,et al.  The next generation of scenarios for climate change research and assessment , 2010, Nature.

[31]  Fabian Wagner,et al.  GAINS-BI: business intelligent approach for greenhouse gas and air pollution interactions and synergies information system , 2008, iiWAS.

[32]  B. Sohngen,et al.  Global Forestry Data for the Economic Modeling of Land Use , 2008, GTAP Working Paper.

[33]  T. Carter,et al.  Future scenarios of European agricultural land use: II. Projecting changes in cropland and grassland , 2005 .

[34]  Alexei G. Sankovski,et al.  Special report on emissions scenarios : a special report of Working group III of the Intergovernmental Panel on Climate Change , 2000 .

[35]  R. Houghton The annual net flux of carbon to the atmosphere from changes in land use 1850–1990* , 1999 .

[36]  M. Kainuma,et al.  SSP3: AIM implementation of Shared Socioeconomic Pathways , 2017 .

[37]  J. Eom,et al.  The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview , 2017 .

[38]  M. Strubegger,et al.  The marker quantification of the Shared Socioeconomic Pathway 2: A middle-of-the-road scenario for the 21st century , 2017 .

[39]  P. Kyle,et al.  The SSP4: A world of deepening inequality , 2017 .

[40]  K. Calvin,et al.  Fossil-fueled development (SSP5): An energy and resource intensive scenario for the 21st century , 2017 .

[41]  C. Müller,et al.  Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm , 2017 .

[42]  Jean Chateau,et al.  Long-term economic growth projections in the Shared Socioeconomic Pathways , 2017 .

[43]  K. Riahi,et al.  The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century , 2017 .

[44]  Keywan Riahi,et al.  A new scenario framework for climate change research: the concept of shared socioeconomic pathways , 2013, Climatic Change.

[45]  M. D. A. Rounsevella,et al.  Future scenarios of European agricultural land use II . Projecting changes in cropland and grassland , 2005 .

[46]  تنفيذي موجز World Energy Outlook , 1977 .