Morita equivalence of two $\ell^p$ Roe-type algebras

Given a metric space with bounded geometry, one may associate with it the $\ell^p$ uniform Roe algebra and the $\ell^p$ uniform algebra, both containing information about the large scale geometry of the metric space. We show that these two Banach algebras are Morita equivalent in the sense of Lafforgue for $1\leq p<\infty$. As a consequence, these two Banach algebras have the same $K$-theory. We then define an $\ell^p$ uniform coarse assembly map taking values in the $K$-theory of the $\ell^p$ uniform Roe algebra and show that it is not always surjective.

[1]  Qin Wang,et al.  The coarse geometric $\ell^p$-Novikov conjecture for subspaces of nonpositively curved manifolds , 2019, Journal of Noncommutative Geometry.

[2]  Eusebio Gardella A modern look at algebras of operators on Lp-spaces , 2019, Expositiones Mathematicae.

[3]  Jianguo Zhang,et al.  $L^p$ coarse Baum–Connes conjecture and $K$-theory for $L^p$ Roe algebras , 2019, Journal of Noncommutative Geometry.

[4]  Yeong Chyuan Chung,et al.  Coarse Baum-Connes conjecture and rigidity for Roe algebras , 2019, 1907.10237.

[5]  Kang Li,et al.  Structure and $K$-theory of $\ell^p$ uniform Roe algebras , 2019, Journal of Noncommutative Geometry.

[6]  Yeong Chyuan Chung,et al.  Expanders are counterexamples to the $\ell^p$ coarse Baum–Connes conjecture , 2018, Journal of Noncommutative Geometry.

[7]  Hannes Thiel,et al.  Isomorphisms of algebras of convolution operators , 2018, Annales scientifiques de l'École Normale Supérieure.

[8]  Kang Li,et al.  A quasi-local characterisation of L-Roe algebras , 2018, Journal of Mathematical Analysis and Applications.

[9]  Yeong Chyuan Chung,et al.  Rigidity of ℓp Roe‐type algebras , 2018, Bulletin of the London Mathematical Society.

[10]  Hung-Chang Liao,et al.  Classification of uniform Roe algebras of locally finite groups , 2017, Journal of Operator Theory.

[11]  Kang Li,et al.  Low‐dimensional properties of uniform Roe algebras , 2017, J. Lond. Math. Soc..

[12]  Yeong Chyuan Chung Dynamical complexity and K-theory of Lp operator crossed products , 2016, Journal of Topology and Analysis.

[13]  Hannes Thiel,et al.  Representations of $p$-convolution algebras on $L^q$-spaces , 2016, Transactions of the American Mathematical Society.

[14]  Hannes Thiel,et al.  Quotients of Banach algebras acting on Lp-spaces , 2014, 1412.3985.

[15]  M. Lupini,et al.  Representations of \'etale groupoids on $L^p$-spaces , 2014, 1408.3752.

[16]  Walther Paravicini kk-Theory for Banach algebras I: The non-equivariant case , 2014, 1406.2094.

[17]  S. Hejazian,et al.  Simple reduced $L^p$ operator crossed products with unique trace , 2014, 1402.3233.

[18]  N. Phillips Crossed products of $L^p$ operator algebras and the K-theory of Cuntz algebras on $L^p$ spaces , 2013, 1309.6406.

[19]  N. Phillips Analogs of Cuntz algebras on Lp spaces , 2012, 1201.4196.

[20]  Ján Špakula,et al.  On rigidity of Roe algebras , 2011, 1110.1532.

[21]  Ján Špakula,et al.  Maximal and reduced Roe algebras of coarsely embeddable spaces , 2011, 1110.1531.

[22]  Shuyun Wei On the quasidiagonality of Roe algebras , 2011 .

[23]  Rufus Willett,et al.  Higher index theory for certain expanders and Gromov monster groups I , 2010, 1012.4150.

[24]  Ján Špakula Uniform K-homology theory , 2009 .

[25]  Walther Paravicini Morita equivalences and KK-theory for Banach algebras , 2008, Journal of the Institute of Mathematics of Jussieu.

[26]  Dana P. Williams Crossed products of C*-algebras , 2007 .

[27]  V. Lafforgue Banach KK-theory and the Baum-Connes conjecture , 2003, math/0304342.

[28]  Vincent Lafforgue,et al.  K-théorie bivariante pour les algèbres de Banach et conjecture de Baum-Connes , 2002 .

[29]  Dana P. Williams,et al.  Morita Equivalence and Continuous-Trace $C^*$-Algebras , 1998 .

[30]  N. Grønbæk Morita equivalence for Banach algebras , 1995 .

[31]  M. Rieffel,et al.  Stable isomorphism and strong Morita equivalence of $C^*$-algebras. , 1977 .

[32]  M. Rieffel Strong morita equivalence of certain transformation groupC*-algebras , 1976 .

[33]  Marc A. Rieffel,et al.  Morita equivalence for c∗-algebras and w∗-algebras , 1974 .

[34]  Marc A. Rieffel,et al.  Induced representations of C∗-algebras , 1974 .

[35]  F. Trèves Topological vector spaces, distributions and kernels , 1967 .

[36]  G W Mackey,et al.  Imprimitivity for Representations of Locally Compact Groups I. , 1949, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Paul B. Garrett Topological vector spaces , 2016 .

[38]  Nathanial P. Brown Narutaka Ozawa C*-Algebras and Finite-Dimensional Approximations , 2008 .

[39]  J. Tu Remarks on YU's 'property a' for discrete metric spaces and groups , 2001 .

[40]  Guoliang Yu,et al.  The coarse Baum–Connes conjecture for spaces which admit a uniform embedding into Hilbert space , 2000 .

[41]  M. Rieffel Morita equivalence for operator algebras , 1980 .

[42]  Kiiti Morita,et al.  Duality for modules and its applications to the theory of rings with minimum condition , 1958 .