Magnetic field decay of magnetars in supernova remnants
暂无分享,去创建一个
Jian-ping Yuan | J. Yuan | Q. Peng | Z. Gao | Na Wang | N. Wang | Q. H. Peng | N. Wang | J. Yuan | Z. F. Gao
[1] N. Rea,et al. MODELING MAGNETAR OUTBURSTS: FLUX ENHANCEMENTS AND THE CONNECTION WITH SHORT BURSTS AND GLITCHES , 2012, 1203.4506.
[2] M. Cheung,et al. MAGNETOHYDRODYNAMICS OF THE WEAKLY IONIZED SOLAR PHOTOSPHERE , 2012, 1202.1937.
[3] Q. Peng,et al. The Landau level-superfluid modified factor and the overal soft X/γ-ray efficiency coefficient of a magnetar , 2011, 1312.2720.
[4] J. Yuan,et al. The effects of intense magnetic fields on Landau levels in a neutron star , 2011, 1309.0121.
[5] J. Yuan,et al. Evolution of superhigh magnetic fields of magnetars , 2011, 1312.2728.
[6] J. Yuan,et al. Numerical simulation of the electron capture process in a magnetar interior , 2011, 1312.2733.
[7] E. Gotthelf,et al. AN ENERGETIC MAGNETAR IN HESS J1713−381/CTB 37B , 2010, 1008.2558.
[8] D. Lorimer,et al. Isolated pulsar spin evolution on the P – diagram , 2010, 1001.2483.
[9] U. Geppert,et al. Magneto-thermal evolution of neutron stars , 2008, 0812.3018.
[10] S. Horiuchi,et al. Non-thermal neutrinos from supernovae leaving a magnetar , 2008, 0807.0267.
[11] S. Mereghetti. The strongest cosmic magnets: soft gamma-ray repeaters and anomalous X-ray pulsars , 2008, 0804.0250.
[12] HESS Collaboration F. Aharonian,et al. Chandra and HESS observations of the supernova remnant CTB 37B , 2008, 0803.0682.
[13] D. Aguilera,et al. The Impact of Magnetic Field on the Thermal Evolution of Neutron Stars , 2007, 0712.1353.
[14] F. Camilo,et al. 1E 1547.0–5408: A Radio-emitting Magnetar with a Rotation Period of 2 Seconds , 2007, 0708.0002.
[15] B. M. Gaensler,et al. The Compact X-Ray Source 1E 1547.0–5408 and the Radio Shell G327.24-0.13: A New Proposed Association between a Candidate Magnetar and a Candidate Supernova Remnant , 2007, 0706.1054.
[16] Q. Peng,et al. The physics of strong magnetic fields in neutron stars , 2007, 0706.0060.
[17] D. Tao,et al. The superflares of soft γ-ray repeaters: giant quakes in solid quark stars? , 2006, astro-ph/0607106.
[18] X. D. Li,et al. Why the braking indices of young pulsars are less than 3 , 2006, astro-ph/0603012.
[19] Nicolas Produit,et al. GRB 040403: A faint X-ray rich gamma-ray burst discovered by INTEGRAL , 2004, astro-ph/0412012.
[20] K. Hurley,et al. INTEGRAL discovery of persistent hard X-ray emission from the Soft Gamma-ray Repeater SGR 1806-20 , 2004, astro-ph/0411695.
[21] C. Kouveliotou,et al. Precise Localization of the Soft Gamma Repeater SGR 1627–41 and the Anomalous X-Ray Pulsar AXP 1E1841–045 with Chandra , 2004, astro-ph/0408266.
[22] C. Kouveliotou,et al. A Near-Infrared Survey of the N49 Region around the Soft Gamma Repeater SGR 0526–66 , 2004, astro-ph/0405299.
[23] P. Arras,et al. Magnetars: Time Evolution, Superfluid Properties, and the Mechanism of Magnetic Field Decay , 2004, astro-ph/0401561.
[24] M. P. Allen,et al. Influence of an Internal Magnetar on Supernova Remnant Expansion , 2003, astro-ph/0311570.
[25] R. Xu,et al. The braking indices in pulsar emission models , 2003, astro-ph/0307359.
[26] S. Golenetskii,et al. An Extended Burst Tail from SGR 1900+14 with a Thermal X-Ray Spectrum , 2003, astro-ph/0301577.
[27] D. Frail,et al. The Quiescent Counterpart of the Soft Gamma-Ray Repeater SGR 0526–66 , 2002, astro-ph/0209520.
[28] U. Geppert,et al. Hall-drift induced magnetic field instability in neutron stars. , 2002, Physical review letters.
[29] S. R. Kulkarni,et al. Electrodynamics of Magnetars: Implications for the Persistent X-Ray Emission and Spin-down of the Soft Gamma Repeaters and Anomalous X-Ray Pulsars , 2001, astro-ph/0110677.
[30] R. Xu,et al. Pulsar Braking Index: A Test of Emission Models? , 2001, astro-ph/0108235.
[31] R. Perna,et al. Disk-assisted Spin-down of Young Radio Pulsars , 2001, astro-ph/0103326.
[32] O. Gnedin,et al. Neutrino emission from neutron stars , 2000, astro-ph/0012122.
[33] Tod E. Strohmayer,et al. An Unusual Burst from Soft Gamma Repeater SGR 1900+14: Comparisons with Giant Flares and Implications for the Magnetar Model , 2000, astro-ph/0007043.
[34] J. Higdon,et al. Nature versus Nurture: The Origin of Soft Gamma-Ray Repeaters and Anomalous X-Ray Pulsars , 1999, astro-ph/9912207.
[35] Bing Zhang,et al. Nature and Nurture: a Model for Soft Gamma-Ray Repeaters , 2000, astro-ph/0010225.
[36] G. Vasisht,et al. Detection of a Compact X-Ray Source in the Supernova Remnant G29.6+0.1: A Variable Anomalous X-Ray Pulsar? , 2000, astro-ph/0008196.
[37] Tong-Jie Zhang,et al. A Comparison of Central Temperatures of the Intracluster Gas Determined from X-Ray and Sunyaev-Zeldovich Measurements , 2000, astro-ph/0007410.
[38] Columbia,et al. Anomalous X-Ray Pulsars and Soft Gamma-Ray Repeaters in Supernova Remnants , 2001, astro-ph/0104228.
[39] C. Kouveliotou,et al. Physical Mechanisms for the Variable Spin-down and Light Curve of SGR 1900+14 , 1999, astro-ph/9908086.
[40] Gaensler,et al. A New Supernova Remnant Coincident with the Slow X-Ray Pulsar AX J1845-0258. , 1999, The Astrophysical journal.
[41] Chapuis,et al. The Distance to the Soft Gamma Repeater SGR 1627–41 , 1999, The Astrophysical journal.
[42] R. Rothschild,et al. Erratum: "Is SGR 1900114 a Magnetar?" (ApJ, 520, L107 [1999]) , 1999 .
[43] E. Mazets,et al. Unusual Burst Emission from the New Soft Gamma Repeater SGR 1627–41 , 1999 .
[44] R. Rothschild,et al. Is SGR 1900+14 a Magnetar? , 1999, astro-ph/9904244.
[45] E. Mazets,et al. Reactivation and Precise Interplanetary Network Localization of the Soft Gamma Repeater SGR 1900+14 , 1998, astro-ph/9811411.
[46] Jeremy S. Heyl,et al. How Common Are Magnetars? The Consequences of Magnetic Field Decay , 1998, astro-ph/9807306.
[47] J. Heyl,et al. Powering Anomalous X-Ray Pulsars by Neutron Star Cooling , 1997, astro-ph/9708179.
[48] M. P. Allen,et al. Implications of a Constant Observed Braking Index for Young Pulsars' Spin-down , 1997, astro-ph/9708007.
[49] J. Rho,et al. X-Ray Imaging and Spectroscopy of the Supernova Remnant CTB 109 and Its Associated Pulsar 1E 2259+586 , 1997 .
[50] Christopher Thompson,et al. The Soft Gamma Repeaters as Very Strongly Magnetized Neutron Stars. II. Quiescent Neutrino, X-Ray, and Alfvén Wave Emission , 1996 .
[51] Hjorth-Jensen,et al. Superfluidity in beta -Stable Neutron Star Matter. , 1996, Physical review letters.
[52] T. Lu,et al. High velocity neutron stars and gamma-ray bursts , 1996 .
[53] R. Taam,et al. On the nature of the 'anomalous' 6-s X-ray pulsars , 1995 .
[54] D. Frail,et al. SUPERNOVA REMNANT CANDIDATES FOR THE SOFT GAMMA -RAY REPEATER 1900+14 , 1994 .
[55] C. Kouveliotou,et al. The rarity of soft γ-ray repeaters deduced from reactivation of SGR1806 – 20 , 1994, Nature.
[56] D. Frail,et al. Identification of a supernova remnant coincident with the soft γ-ray repeater SGR1806 - 20 , 1993, Nature.
[57] Andreas Reisenegger,et al. Magnetic field decay in isolated neutron stars , 1992 .
[58] Christopher Thompson,et al. Formation of very strongly magnetized neutron stars - Implications for gamma-ray bursts , 1992 .
[59] J. Ostriker,et al. Pulsar Populations and Their Evolution , 1990 .
[60] R. Fesen,et al. Pulsar reenergization of old supernova remnant shells , 1989 .
[61] D. A. Green. Sensitive OH observations towards 16 supernova remnants , 1989 .
[62] R. Blandford,et al. On the interpretation of pulsar braking indices , 1988 .
[63] F. Marshall,et al. The unusually soft X-ray spectrum of LMC X-3 , 1984 .
[64] Saul A. Teukolsky,et al. Black Holes, White Dwarfs, and Neutron Stars , 1983 .
[65] P. Gregory,et al. An X-ray pulsar in SNR G109.1–1.0 , 1981, Nature.
[66] J. Gunn,et al. On the Nature of Pulsars. III. Analysis of Observations , 1970 .
[67] J. Gunn,et al. On the nature of pulsars. I - Theory. , 1969 .
[68] L. Cooper,et al. Theory of superconductivity , 1957 .