Magnetic field decay of magnetars in supernova remnants

[1]  N. Rea,et al.  MODELING MAGNETAR OUTBURSTS: FLUX ENHANCEMENTS AND THE CONNECTION WITH SHORT BURSTS AND GLITCHES , 2012, 1203.4506.

[2]  M. Cheung,et al.  MAGNETOHYDRODYNAMICS OF THE WEAKLY IONIZED SOLAR PHOTOSPHERE , 2012, 1202.1937.

[3]  Q. Peng,et al.  The Landau level-superfluid modified factor and the overal soft X/γ-ray efficiency coefficient of a magnetar , 2011, 1312.2720.

[4]  J. Yuan,et al.  The effects of intense magnetic fields on Landau levels in a neutron star , 2011, 1309.0121.

[5]  J. Yuan,et al.  Evolution of superhigh magnetic fields of magnetars , 2011, 1312.2728.

[6]  J. Yuan,et al.  Numerical simulation of the electron capture process in a magnetar interior , 2011, 1312.2733.

[7]  E. Gotthelf,et al.  AN ENERGETIC MAGNETAR IN HESS J1713−381/CTB 37B , 2010, 1008.2558.

[8]  D. Lorimer,et al.  Isolated pulsar spin evolution on the P – diagram , 2010, 1001.2483.

[9]  U. Geppert,et al.  Magneto-thermal evolution of neutron stars , 2008, 0812.3018.

[10]  S. Horiuchi,et al.  Non-thermal neutrinos from supernovae leaving a magnetar , 2008, 0807.0267.

[11]  S. Mereghetti The strongest cosmic magnets: soft gamma-ray repeaters and anomalous X-ray pulsars , 2008, 0804.0250.

[12]  HESS Collaboration F. Aharonian,et al.  Chandra and HESS observations of the supernova remnant CTB 37B , 2008, 0803.0682.

[13]  D. Aguilera,et al.  The Impact of Magnetic Field on the Thermal Evolution of Neutron Stars , 2007, 0712.1353.

[14]  F. Camilo,et al.  1E 1547.0–5408: A Radio-emitting Magnetar with a Rotation Period of 2 Seconds , 2007, 0708.0002.

[15]  B. M. Gaensler,et al.  The Compact X-Ray Source 1E 1547.0–5408 and the Radio Shell G327.24-0.13: A New Proposed Association between a Candidate Magnetar and a Candidate Supernova Remnant , 2007, 0706.1054.

[16]  Q. Peng,et al.  The physics of strong magnetic fields in neutron stars , 2007, 0706.0060.

[17]  D. Tao,et al.  The superflares of soft γ-ray repeaters: giant quakes in solid quark stars? , 2006, astro-ph/0607106.

[18]  X. D. Li,et al.  Why the braking indices of young pulsars are less than 3 , 2006, astro-ph/0603012.

[19]  Nicolas Produit,et al.  GRB 040403: A faint X-ray rich gamma-ray burst discovered by INTEGRAL , 2004, astro-ph/0412012.

[20]  K. Hurley,et al.  INTEGRAL discovery of persistent hard X-ray emission from the Soft Gamma-ray Repeater SGR 1806-20 , 2004, astro-ph/0411695.

[21]  C. Kouveliotou,et al.  Precise Localization of the Soft Gamma Repeater SGR 1627–41 and the Anomalous X-Ray Pulsar AXP 1E1841–045 with Chandra , 2004, astro-ph/0408266.

[22]  C. Kouveliotou,et al.  A Near-Infrared Survey of the N49 Region around the Soft Gamma Repeater SGR 0526–66 , 2004, astro-ph/0405299.

[23]  P. Arras,et al.  Magnetars: Time Evolution, Superfluid Properties, and the Mechanism of Magnetic Field Decay , 2004, astro-ph/0401561.

[24]  M. P. Allen,et al.  Influence of an Internal Magnetar on Supernova Remnant Expansion , 2003, astro-ph/0311570.

[25]  R. Xu,et al.  The braking indices in pulsar emission models , 2003, astro-ph/0307359.

[26]  S. Golenetskii,et al.  An Extended Burst Tail from SGR 1900+14 with a Thermal X-Ray Spectrum , 2003, astro-ph/0301577.

[27]  D. Frail,et al.  The Quiescent Counterpart of the Soft Gamma-Ray Repeater SGR 0526–66 , 2002, astro-ph/0209520.

[28]  U. Geppert,et al.  Hall-drift induced magnetic field instability in neutron stars. , 2002, Physical review letters.

[29]  S. R. Kulkarni,et al.  Electrodynamics of Magnetars: Implications for the Persistent X-Ray Emission and Spin-down of the Soft Gamma Repeaters and Anomalous X-Ray Pulsars , 2001, astro-ph/0110677.

[30]  R. Xu,et al.  Pulsar Braking Index: A Test of Emission Models? , 2001, astro-ph/0108235.

[31]  R. Perna,et al.  Disk-assisted Spin-down of Young Radio Pulsars , 2001, astro-ph/0103326.

[32]  O. Gnedin,et al.  Neutrino emission from neutron stars , 2000, astro-ph/0012122.

[33]  Tod E. Strohmayer,et al.  An Unusual Burst from Soft Gamma Repeater SGR 1900+14: Comparisons with Giant Flares and Implications for the Magnetar Model , 2000, astro-ph/0007043.

[34]  J. Higdon,et al.  Nature versus Nurture: The Origin of Soft Gamma-Ray Repeaters and Anomalous X-Ray Pulsars , 1999, astro-ph/9912207.

[35]  Bing Zhang,et al.  Nature and Nurture: a Model for Soft Gamma-Ray Repeaters , 2000, astro-ph/0010225.

[36]  G. Vasisht,et al.  Detection of a Compact X-Ray Source in the Supernova Remnant G29.6+0.1: A Variable Anomalous X-Ray Pulsar? , 2000, astro-ph/0008196.

[37]  Tong-Jie Zhang,et al.  A Comparison of Central Temperatures of the Intracluster Gas Determined from X-Ray and Sunyaev-Zeldovich Measurements , 2000, astro-ph/0007410.

[38]  Columbia,et al.  Anomalous X-Ray Pulsars and Soft Gamma-Ray Repeaters in Supernova Remnants , 2001, astro-ph/0104228.

[39]  C. Kouveliotou,et al.  Physical Mechanisms for the Variable Spin-down and Light Curve of SGR 1900+14 , 1999, astro-ph/9908086.

[40]  Gaensler,et al.  A New Supernova Remnant Coincident with the Slow X-Ray Pulsar AX J1845-0258. , 1999, The Astrophysical journal.

[41]  Chapuis,et al.  The Distance to the Soft Gamma Repeater SGR 1627–41 , 1999, The Astrophysical journal.

[42]  R. Rothschild,et al.  Erratum: "Is SGR 1900114 a Magnetar?" (ApJ, 520, L107 [1999]) , 1999 .

[43]  E. Mazets,et al.  Unusual Burst Emission from the New Soft Gamma Repeater SGR 1627–41 , 1999 .

[44]  R. Rothschild,et al.  Is SGR 1900+14 a Magnetar? , 1999, astro-ph/9904244.

[45]  E. Mazets,et al.  Reactivation and Precise Interplanetary Network Localization of the Soft Gamma Repeater SGR 1900+14 , 1998, astro-ph/9811411.

[46]  Jeremy S. Heyl,et al.  How Common Are Magnetars? The Consequences of Magnetic Field Decay , 1998, astro-ph/9807306.

[47]  J. Heyl,et al.  Powering Anomalous X-Ray Pulsars by Neutron Star Cooling , 1997, astro-ph/9708179.

[48]  M. P. Allen,et al.  Implications of a Constant Observed Braking Index for Young Pulsars' Spin-down , 1997, astro-ph/9708007.

[49]  J. Rho,et al.  X-Ray Imaging and Spectroscopy of the Supernova Remnant CTB 109 and Its Associated Pulsar 1E 2259+586 , 1997 .

[50]  Christopher Thompson,et al.  The Soft Gamma Repeaters as Very Strongly Magnetized Neutron Stars. II. Quiescent Neutrino, X-Ray, and Alfvén Wave Emission , 1996 .

[51]  Hjorth-Jensen,et al.  Superfluidity in beta -Stable Neutron Star Matter. , 1996, Physical review letters.

[52]  T. Lu,et al.  High velocity neutron stars and gamma-ray bursts , 1996 .

[53]  R. Taam,et al.  On the nature of the 'anomalous' 6-s X-ray pulsars , 1995 .

[54]  D. Frail,et al.  SUPERNOVA REMNANT CANDIDATES FOR THE SOFT GAMMA -RAY REPEATER 1900+14 , 1994 .

[55]  C. Kouveliotou,et al.  The rarity of soft γ-ray repeaters deduced from reactivation of SGR1806 – 20 , 1994, Nature.

[56]  D. Frail,et al.  Identification of a supernova remnant coincident with the soft γ-ray repeater SGR1806 - 20 , 1993, Nature.

[57]  Andreas Reisenegger,et al.  Magnetic field decay in isolated neutron stars , 1992 .

[58]  Christopher Thompson,et al.  Formation of very strongly magnetized neutron stars - Implications for gamma-ray bursts , 1992 .

[59]  J. Ostriker,et al.  Pulsar Populations and Their Evolution , 1990 .

[60]  R. Fesen,et al.  Pulsar reenergization of old supernova remnant shells , 1989 .

[61]  D. A. Green Sensitive OH observations towards 16 supernova remnants , 1989 .

[62]  R. Blandford,et al.  On the interpretation of pulsar braking indices , 1988 .

[63]  F. Marshall,et al.  The unusually soft X-ray spectrum of LMC X-3 , 1984 .

[64]  Saul A. Teukolsky,et al.  Black Holes, White Dwarfs, and Neutron Stars , 1983 .

[65]  P. Gregory,et al.  An X-ray pulsar in SNR G109.1–1.0 , 1981, Nature.

[66]  J. Gunn,et al.  On the Nature of Pulsars. III. Analysis of Observations , 1970 .

[67]  J. Gunn,et al.  On the nature of pulsars. I - Theory. , 1969 .

[68]  L. Cooper,et al.  Theory of superconductivity , 1957 .