Kinetic Study of the Alcoholic Fermentation Process, in the Presence of Free and Immobilized Saccharomyces Cerevisiae Cells, at Different Initial Glucose Concentrations by Reversed Flow GC

[1]  G. C. Lainioti,et al.  New separation methodologies for the distinction of the growth phases of Saccharomyces cerevisiae cell cycle. , 2010, Journal of chromatography. A.

[2]  L. Farmakis,et al.  Study of the growth rate of Saccharomyces cerevisiae strains using wheat starch granules as support for yeast immobilization monitoring by sedimentation/steric field-flow fractionation , 2007 .

[3]  Jordi Mas,et al.  Monitoring alcoholic fermentation by joint use of soft and hard modelling methods , 2006 .

[4]  L. Farmakis,et al.  Kinetic Study of Cell Proliferation of Saccharomyces cerevisiae Strains by Sedimentation/Steric Field Flow Fractionation in Situ , 2008, Biotechnology progress.

[5]  M. Moo-young,et al.  Observed quasi-steady kinetics of yeast cell growth and ethanol formation under very high gravity fermentation condition , 2005 .

[6]  F. Pardo,et al.  Effect of fungicide residues on the aromatic composition of white wine inoculated with three Saccharomyces cerevisiae strains. , 2004, Journal of agricultural and food chemistry.

[7]  M. Ciani,et al.  The growth kinetics and fermentation behaviour of some non-Saccharomyces yeasts associated with wine-making , 1995, Biotechnology Letters.

[8]  Y. Ohta,et al.  Promotive action of ceramics on yeast ethanol production, and its relationship to pH, glycerol and alcohol dehydrogenase activity , 1992, Applied Microbiology and Biotechnology.

[9]  P. Margalith,et al.  Alcoholic fermentation by immobilized yeast at high sugar concentrations , 1981, European journal of applied microbiology and biotechnology.

[10]  K. Mosbach,et al.  Steroid transformation by living cells immobilized in calcium alginate , 1979, European journal of applied microbiology and biotechnology.

[11]  G. Fleet Yeast interactions and wine flavour. , 2003, International journal of food microbiology.

[12]  M. Komaitis,et al.  Wine production using yeast immobilized on quince biocatalyst at temperatures between 30 and 0 °C , 2003 .

[13]  M. Komaitis,et al.  Wine production using yeast immobilized on apple pieces at low and room temperatures. , 2001, Journal of agricultural and food chemistry.

[14]  M. Komaitis,et al.  Continuous wine making by γ-alumina-supported biocatalyst , 2000 .

[15]  G. Karaiskakis,et al.  Study of the sorption of carbon monoxide, oxygen and carbon dioxide on platinum–rhodium alloy catalysts by a new gas chromatographic methodology , 1999 .

[16]  A. Koliadima,et al.  Adsorption studies of gases on Pt-Rh bimetallic catalysts by reversed-flow gas chromatography , 1999 .

[17]  K. Ulgen,et al.  Mathematical description of ethanol fermentation by immobilised Saccharomyces cerevisiae , 1998 .

[18]  F. Roubani-Kalantzopoulou Gas chromatographic determination of binary adsorption isotherms , 1998 .

[19]  G. Karaiskakis,et al.  New Gas Chromatographic Instrumentation for Studying Mass Transfer Phenomena , 1997 .

[20]  N. A. Katsanos,et al.  Gas chromatographic determination of rate constants in bimolecular gaseous reactions , 1996 .

[21]  G. Giovanelli,et al.  Kinetics of Grape Juice Fermentation Under Aerobic and Anaerobic Conditions , 1996 .

[22]  Athanasios A. Koutinas,et al.  Immobilization of yeast on delignified cellulosic material for room temperature and low-temperature wine making , 1994 .

[23]  N. A. Katsanos,et al.  A Plant Kinetic Study of Alcoholic Fermentation Using Reversed-Flow Gas Chromatography , 1992 .

[24]  M. Kanellaki,et al.  New alcohol resistant strains ofSaccharomyces cerevisiae species for potable alcohol production using molasse , 1992, Applied biochemistry and biotechnology.

[25]  M. Kanellaki,et al.  Low-temperature wine making by immobilized cells on mineral kissiris , 1992 .

[26]  M. Özilgen,et al.  Kinetics of spontaneous wine production , 1991 .

[27]  N. A. Katsanos,et al.  Homogeneous catalysis studied by reversed-flow gas chromatography , 1991 .

[28]  G. Skjåk-Bræk,et al.  Alginate as immobilization matrix for cells. , 1990, Trends in biotechnology.

[29]  N. A. Katsanos,et al.  Diffusion coefficients of gases in liquids and partition coefficients in gas-liquid interphases by reversed-flow gas chromatography , 1989 .

[30]  A. Katsanos Flow Perturbation Gas Chromatography , 1988 .

[31]  N. A. Katsanos,et al.  Measurement of activity coefficients by reversed-flow gas chromatography , 1985 .

[32]  G. Karaiskakis A Reversed-Flow GC Technique: Lennard-Jones Parameters , 1985 .

[33]  N. A. Katsanos,et al.  Rate coefficients for evaporation of pure liquids and diffusion coefficients of vapors , 1984 .

[34]  N. A. Katsanos,et al.  Determination of adsorption equilibrium constants by reversed-flow gas chromatography , 1982 .

[35]  N. A. Katsanos,et al.  Measurement of diffusion coefficients by reversed-flow gas chromatography instrumentation , 1982 .

[36]  N. A. Katsanos,et al.  Reversed flow gas chromatography for studying heterogeneous catalysis , 1980 .