Fusing color and edge information for object matching

This paper illustrates the advantages of using multiple cues for object matching. Given two sets of people entering and leaving a room, the goal is to identify the matching pairs assuming that the viewing aspects of the people in the two scenes are similar. Color information or 2D shape information alone is not enough to find all the matching pairs, but all the matching pairs are correctly identified when both the features are combined.<<ETX>>

[1]  Thomas S. Huang,et al.  Image registration by matching relational structures , 1982, Pattern Recognit..

[2]  King-Sun Fu,et al.  Shape Discrimination Using Fourier Descriptors , 1977, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Daniel P. Huttenlocher,et al.  Comparing Images Using the Hausdorff Distance , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Ming-Kuei Hu,et al.  Visual pattern recognition by moment invariants , 1962, IRE Trans. Inf. Theory.

[5]  Anil K. Jain,et al.  2D matching of 3D moving objects in color outdoor scenes , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[6]  Azriel Rosenfeld,et al.  Point pattern matching by relaxation , 1980, Pattern Recognit..

[7]  Larry S. Davis,et al.  Shape Matching Using Relaxation Techniques , 1979, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Prasanna G. Mulgaonkar,et al.  Matching three-dimensional objects using a relational paradigm , 1984, Pattern Recognit..

[9]  Anil K. Jain,et al.  A modified Hausdorff distance for object matching , 1994, Proceedings of 12th International Conference on Pattern Recognition.

[10]  George C. Stockman,et al.  Object recognition and localization via pose clustering , 1987, Comput. Vis. Graph. Image Process..

[11]  Anil K. Jain,et al.  Chord distributions for shape matching , 1982, Comput. Graph. Image Process..