Dopamine neurons projecting to the posterior striatum form an anatomically distinct subclass

Combining rabies-virus tracing, optical clearing (CLARITY), and whole-brain light-sheet imaging, we mapped the monosynaptic inputs to midbrain dopamine neurons projecting to different targets (different parts of the striatum, cortex, amygdala, etc) in mice. We found that most populations of dopamine neurons receive a similar set of inputs rather than forming strong reciprocal connections with their target areas. A common feature among most populations of dopamine neurons was the existence of dense ‘clusters’ of inputs within the ventral striatum. However, we found that dopamine neurons projecting to the posterior striatum were outliers, receiving relatively few inputs from the ventral striatum and instead receiving more inputs from the globus pallidus, subthalamic nucleus, and zona incerta. These results lay a foundation for understanding the input/output structure of the midbrain dopamine circuit and demonstrate that dopamine neurons projecting to the posterior striatum constitute a unique class of dopamine neurons regulated by different inputs. DOI: http://dx.doi.org/10.7554/eLife.10032.001

[1]  C. Dulac,et al.  Optimized Protocol for Imaging Cleared Neural Tissues Using Light Microscopy. , 2017, Methods in molecular biology.

[2]  R. Wise Dopamine, learning and motivation , 2004, Nature Reviews Neuroscience.

[3]  P. Sanberg,et al.  Neuroscience and Biobehavioral Reviews , 2002, Physiology & Behavior.

[4]  B. Berger,et al.  Further indication that distinct dopaminergic subsets project to the rat cerebral cortex: lack of colocalization with neurotensin in the superficial dopaminergic fields of the anterior cingulate, motor, retrosplenial and visual cortices , 1991, Brain Research.

[5]  Rajan P Kulkarni,et al.  Single-Cell Phenotyping within Transparent Intact Tissue through Whole-Body Clearing , 2014, Cell.

[6]  Rajesh P. N. Rao,et al.  Decision Making Under Uncertainty: A Neural Model Based on Partially Observable Markov Decision Processes , 2010, Front. Comput. Neurosci..

[7]  Peter Dayan,et al.  A Neural Substrate of Prediction and Reward , 1997, Science.

[8]  Joel L. Davis,et al.  A Model of How the Basal Ganglia Generate and Use Neural Signals That Predict Reinforcement , 1994 .

[9]  Talia N. Lerner,et al.  Intact-Brain Analyses Reveal Distinct Information Carried by SNc Dopamine Subcircuits , 2015, Cell.

[10]  Anne E Carpenter,et al.  Neuron-type specific signals for reward and punishment in the ventral tegmental area , 2011, Nature.

[11]  P. Glimcher,et al.  Phasic Dopamine Release in the Rat Nucleus Accumbens Symmetrically Encodes a Reward Prediction Error Term , 2014, The Journal of Neuroscience.

[12]  D. Brooks,et al.  Imaging neurodegeneration in Parkinson's disease. , 2009, Biochimica et biophysica acta.

[13]  S. Lammel,et al.  Unique Properties of Mesoprefrontal Neurons within a Dual Mesocorticolimbic Dopamine System , 2008, Neuron.

[14]  D. Todman Synapse , 2009, European Neurology.

[15]  Ian R. Wickersham,et al.  Monosynaptic Restriction of Transsynaptic Tracing from Single, Genetically Targeted Neurons , 2007, Neuron.

[16]  F. Fujiyama,et al.  Single Nigrostriatal Dopaminergic Neurons Form Widely Spread and Highly Dense Axonal Arborizations in the Neostriatum , 2009, The Journal of Neuroscience.

[17]  Laszlo Zaborszky,et al.  The Midbrain Dopaminergic System: Anatomy and Genetic Variation in Dopamine Neuron Number of Inbred Mouse Strains , 2001, Behavior genetics.

[18]  Liqun Luo,et al.  Monosynaptic Circuit Tracing with Glycoprotein-Deleted Rabies Viruses , 2015, The Journal of Neuroscience.

[19]  Hyoung F. Kim,et al.  Separate groups of dopamine neurons innervate caudate head and tail encoding flexible and stable value memories , 2014, Front. Neuroanat..

[20]  Naoshige Uchida,et al.  Organization of monosynaptic inputs to the serotonin and dopamine neuromodulatory systems. , 2014, Cell reports.

[21]  Larry W Swanson,et al.  Axonal projections from the parasubthalamic nucleus , 2004, The Journal of comparative neurology.

[22]  T. Bonhoeffer,et al.  Current opinion in neurobiology , 1997, Current Opinion in Neurobiology.

[23]  Ethan S. Bromberg-Martin,et al.  Dopamine in Motivational Control: Rewarding, Aversive, and Alerting , 2010, Neuron.

[24]  H. Groenewegen,et al.  Topographical organization and relationship with ventral striatal compartments of prefrontal corticostriatal projections in the rat , 1992, The Journal of comparative neurology.

[25]  L. Heimer,et al.  New perspectives in basal forebrain organization of special relevance for neuropsychiatric disorders: The striatopallidal, amygdaloid, and corticopetal components of substantia innominata , 1988, Neuroscience.

[26]  J. Obeso,et al.  Subthalamic nucleus‐mediated excitotoxicity in parkinson's disease: A target for neuroprotection , 1998, Annals of neurology.

[27]  P. Redgrave,et al.  The short-latency dopamine signal: a role in discovering novel actions? , 2006, Nature Reviews Neuroscience.

[28]  S. Kish,et al.  Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson's disease. Pathophysiologic and clinical implications. , 1988, The New England journal of medicine.

[29]  J. H. Fallon,et al.  Substantia nigra and ventral tegmental area projections to cortex: Topography and collateralization , 1984, Neuroscience.

[30]  J. Paul Bolam,et al.  Faculty Opinions recommendation of Unique properties of mesoprefrontal neurons within a dual mesocorticolimbic dopamine system. , 2008 .

[31]  Nature Protocols , 2006, Nature Cell Biology.

[32]  S. Geisler,et al.  Afferents of the ventral tegmental area in the rat‐anatomical substratum for integrative functions , 2005, The Journal of comparative neurology.

[33]  S. Haber,et al.  Primate striatonigral projections: A comparison of the sensorimotor‐related striatum and the ventral striatum , 1994, The Journal of comparative neurology.

[34]  T. Preuss Do Rats Have Prefrontal Cortex? The Rose-Woolsey-Akert Program Reconsidered , 1995, Journal of Cognitive Neuroscience.

[35]  Ullrich Köthe,et al.  Ilastik: Interactive learning and segmentation toolkit , 2011, 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[36]  G. Silberberg,et al.  A Whole-Brain Atlas of Inputs to Serotonergic Neurons of the Dorsal and Median Raphe Nuclei , 2014, Neuron.

[37]  N. Canteras,et al.  Afferent connections of the subthalamic nucleus: a combined retrograde and anterograde horseradish peroxidase study in the rat , 1990, Brain Research.

[38]  W. Schultz Multiple dopamine functions at different time courses. , 2007, Annual review of neuroscience.

[39]  Philipp J. Keller,et al.  Fast, high-contrast imaging of animal development with scanned light sheet–based structured-illumination microscopy , 2010, Nature Methods.

[40]  S. Haber The place of dopamine in the cortico-basal ganglia circuit , 2014, Neuroscience.

[41]  Fred A Hamprecht,et al.  Semiautomated correlative 3D electron microscopy of in vivo–imaged axons and dendrites , 2014, Nature Protocols.

[42]  S. Ikemoto Dopamine reward circuitry: Two projection systems from the ventral midbrain to the nucleus accumbens–olfactory tubercle complex , 2007, Brain Research Reviews.

[43]  George Paxinos,et al.  The Mouse Brain in Stereotaxic Coordinates , 2001 .

[44]  S H Snyder,et al.  Positron emission tomographic imaging of the dopamine transporter with 11C‐WIN 35,428 reveals marked declines in mild Parkinson's disease , 1993, Annals of neurology.

[45]  J. Doyon,et al.  Distinct basal ganglia territories are engaged in early and advanced motor sequence learning. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[46]  W. Schultz Neuronal Reward and Decision Signals: From Theories to Data. , 2015, Physiological reviews.

[47]  Philippe Mailly,et al.  Evidence for a direct subthalamo‐cortical loop circuit in the rat , 2008, The European journal of neuroscience.

[48]  D. Corbett,et al.  Axonal branching of ventral tegmental and raphe projections to the frontal cortex in the rat , 1984, Neuroscience Letters.

[49]  S. J. Shammah-Lagnado,et al.  Organization of ventral tegmental area projections to the ventral tegmental area–nigral complex in the rat , 2008, Neuroscience.

[50]  K. Berridge,et al.  Advances in the neurobiological bases for food ‘liking’ versus ‘wanting’ , 2014, Physiology & Behavior.

[51]  Yasushi Kobayashi,et al.  Reward Prediction Error Computation in the Pedunculopontine Tegmental Nucleus Neurons , 2007, Annals of the New York Academy of Sciences.

[52]  S. Lammel,et al.  Reward and aversion in a heterogeneous midbrain dopamine system , 2014, Neuropharmacology.

[53]  A. Lozano,et al.  Deep brain stimulation state of the art and novel stimulation targets. , 2010, Progress in brain research.

[54]  A. Lees,et al.  Ageing and Parkinson's disease: substantia nigra regional selectivity. , 1991, Brain : a journal of neurology.

[55]  D. S. Zahm,et al.  On the significance of subterritories in the “accumbens” part of the rat ventral striatum , 1992, Neuroscience.

[56]  H. Kita,et al.  Efferent projections of the subthalamic nucleus in the rat: Light and electron microscopic analysis with the PHA‐L method , 1987, The Journal of comparative neurology.

[57]  D. S. Zahm,et al.  An update on the connections of the ventral mesencephalic dopaminergic complex , 2014, Neuroscience.

[58]  B. Kolb,et al.  Do rats have a prefrontal cortex? , 2003, Behavioural Brain Research.

[59]  D J Brooks,et al.  Clinical and [18F] dopa PET findings in early Parkinson's disease. , 1995, Journal of neurology, neurosurgery, and psychiatry.

[60]  P. Phillips,et al.  Pavlovian valuation systems in learning and decision making , 2012, Current Opinion in Neurobiology.

[61]  Hongkui Zeng,et al.  Genetic approaches to neural circuits in the mouse. , 2013, Annual review of neuroscience.

[62]  I. Lucki,et al.  Differential regulation of serotonin (5-HT) release in the striatum and hippocampus by 5-HT1A autoreceptors of the dorsal and median raphe nuclei. , 1994, The Journal of pharmacology and experimental therapeutics.

[63]  V M Pickel,et al.  Ultrastructural localization of tyrosine hydroxylase in the rat ventral tegmental area: relationship between immunolabeling density and neuronal associations , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[64]  Liqun Luo,et al.  Circuit Architecture of VTA Dopamine Neurons Revealed by Systematic Input-Output Mapping , 2015, Cell.

[65]  Linh Vong,et al.  Leptin Action on GABAergic Neurons Prevents Obesity and Reduces Inhibitory Tone to POMC Neurons , 2011, Neuron.

[66]  C. Pennartz,et al.  The nucleus accumbens as a complex of functionally distinct neuronal ensembles: An integration of behavioural, electrophysiological and anatomical data , 1994, Progress in Neurobiology.

[67]  K. Deisseroth,et al.  CLARITY for mapping the nervous system , 2013, Nature Methods.

[68]  Minryung R. Song,et al.  Diversity and Homogeneity in Responses of Midbrain Dopamine Neurons , 2013, The Journal of Neuroscience.

[69]  K. Doya Modulators of decision making , 2008, Nature Neuroscience.

[70]  C. Fiorillo Two Dimensions of Value: Dopamine Neurons Represent Reward But Not Aversiveness , 2013, Science.

[71]  F E Bloom,et al.  Central catecholamine neuron systems: anatomy and physiology of the dopamine systems. , 1978, Annual review of neuroscience.

[72]  Allan R. Jones,et al.  A mesoscale connectome of the mouse brain , 2014, Nature.

[73]  P. Glimcher,et al.  Midbrain Dopamine Neurons Encode a Quantitative Reward Prediction Error Signal , 2005, Neuron.

[74]  E. Susaki,et al.  Whole-Brain Imaging with Single-Cell Resolution Using Chemical Cocktails and Computational Analysis , 2014, Cell.

[75]  T. Hattori,et al.  Collateral projections from the substantia nigra to the cingulate cortex and striatum in the rat , 1986, Brain Research.

[76]  K. Deisseroth,et al.  Advanced CLARITY for rapid and high-resolution imaging of intact tissues , 2014, Nature Protocols.

[77]  HighWire Press The journal of neuroscience : the official journal of the Society for Neuroscience. , 1981 .

[78]  Liqun Luo,et al.  Presynaptic Partners of Dorsal Raphe Serotonergic and GABAergic Neurons , 2014, Neuron.

[79]  W. Cowan,et al.  Annual Review of Neuroscience , 1995 .

[80]  祐川 幸一 Interconnections of the visual cortex with the frontal cortex in the rat , 1988 .

[81]  O. Hikosaka,et al.  Two types of dopamine neuron distinctly convey positive and negative motivational signals , 2009, Nature.

[82]  T. Robbins,et al.  Putting a spin on the dorsal–ventral divide of the striatum , 2004, Trends in Neurosciences.

[83]  J. Deniau,et al.  Deep brain stimulation mechanisms: beyond the concept of local functional inhibition , 2010, The European journal of neuroscience.

[84]  J. Fallon,et al.  Substantia nigra dopamine neurons: separate populations project to neostriatum and allocortex , 1978, Neuroscience Letters.

[85]  R. Wightman,et al.  Real-time chemical responses in the nucleus accumbens differentiate rewarding and aversive stimuli , 2008, Nature Neuroscience.

[86]  R. Vertes Differential projections of the infralimbic and prelimbic cortex in the rat , 2004, Synapse.

[87]  M. Khamassi,et al.  Integrating cortico-limbic-basal ganglia architectures for learning model-based and model-free navigation strategies , 2012, Front. Behav. Neurosci..

[88]  D. S. Zahm,et al.  Glutamatergic Afferents of the Ventral Tegmental Area in the Rat , 2007, The Journal of Neuroscience.

[89]  K. Deisseroth,et al.  Input-specific control of reward and aversion in the ventral tegmental area , 2012, Nature.

[90]  T. Kita,et al.  Rat subthalamic nucleus and zona incerta share extensively overlapped representations of cortical functional territories , 2014, The Journal of comparative neurology.

[91]  Kevin L. Briggman,et al.  Structural neurobiology: missing link to a mechanistic understanding of neural computation , 2012, Nature Reviews Neuroscience.

[92]  F. Wolohan Experimental Brain Research , 2013 .

[93]  L. Tremblay,et al.  Behavioural disorders induced by external globus pallidus dysfunction in primates II. Anatomical study. , 2004, Brain : a journal of neurology.

[94]  Joel L. Davis,et al.  Adaptive Critics and the Basal Ganglia , 1995 .

[95]  J. Yelnik,et al.  Topographic distribution of the axonal endings from the sensorimotor and associative striatum in the macaque pallidum and substantia nigra , 2004, Experimental Brain Research.

[96]  Hyoung F. Kim,et al.  Distinct Basal Ganglia Circuits Controlling Behaviors Guided by Flexible and Stable Values , 2013, Neuron.

[97]  A. Björklund,et al.  Dopamine neuron systems in the brain: an update , 2007, Trends in Neurosciences.

[98]  S. Lammel,et al.  Projection-Specific Modulation of Dopamine Neuron Synapses by Aversive and Rewarding Stimuli , 2011, Neuron.

[99]  T. Jhou,et al.  The mesopontine rostromedial tegmental nucleus: A structure targeted by the lateral habenula that projects to the ventral tegmental area of Tsai and substantia nigra compacta , 2009, The Journal of comparative neurology.

[100]  K. Chaudhuri,et al.  The challenge of non-motor symptoms in Parkinson's disease. , 2010, Progress in brain research.

[101]  N. Renier,et al.  iDISCO: A Simple, Rapid Method to Immunolabel Large Tissue Samples for Volume Imaging , 2014, Cell.

[102]  P. Osten,et al.  Mapping brain circuitry with a light microscope , 2013, Nature Methods.

[103]  B. Hoffer,et al.  Characterization of a mouse strain expressing Cre recombinase from the 3′ untranslated region of the dopamine transporter locus , 2006, Genesis.

[104]  D. Joel,et al.  The connections of the dopaminergic system with the striatum in rats and primates: an analysis with respect to the functional and compartmental organization of the striatum , 2000, Neuroscience.

[105]  Nikolaus R. McFarland,et al.  Striatonigrostriatal Pathways in Primates Form an Ascending Spiral from the Shell to the Dorsolateral Striatum , 2000, The Journal of Neuroscience.

[106]  Dmitriy M Chudakov,et al.  Conversion of red fluorescent protein into a bright blue probe. , 2008, Chemistry & biology.

[107]  M. Merello,et al.  Deep Brain Stimulation of the Subthalamic Nucleus for the Treatment of Parkinson's Disease , 2008 .

[108]  Minryung R. Song,et al.  Multiphasic Temporal Dynamics in Responses of Midbrain Dopamine Neurons to Appetitive and Aversive Stimuli , 2013, The Journal of Neuroscience.

[109]  N. Hattori,et al.  [Etiology and pathogenesis of Parkinson's disease: from mitochondrial dysfunctions to familial Parkinson's disease]. , 2004, Rinsho shinkeigaku = Clinical neurology.

[110]  A. J. Clifford,et al.  BIOCHIMICA ET BIOPHYSICA ACTA , 2022 .

[111]  M. Funk,et al.  Preserved cognition after deep brain stimulation (DBS) in the subthalamic area for Parkinson's disease: a case report , 2010, Acta Neurochirurgica.

[112]  L. Swanson,et al.  The projections of the ventral tegmental area and adjacent regions: A combined fluorescent retrograde tracer and immunofluorescence study in the rat , 1982, Brain Research Bulletin.

[113]  Sachie K. Ogawa,et al.  Whole-Brain Mapping of Direct Inputs to Midbrain Dopamine Neurons , 2012, Neuron.

[114]  H. Bergman,et al.  Goal-directed and habitual control in the basal ganglia: implications for Parkinson's disease , 2010, Nature Reviews Neuroscience.

[115]  O. Hikosaka,et al.  Differential roles of monkey striatum in learning of sequential hand movement , 1997, Experimental Brain Research.

[116]  D. S. Zahm,et al.  The evolving theory of basal forebrain functional—anatomical ‘macrosystems’ , 2006, Neuroscience & Biobehavioral Reviews.

[117]  James H. Fallon,et al.  Monoamine innervation of the forebrain: Collateralization , 1982, Brain Research Bulletin.

[118]  Max A. Viergever,et al.  elastix: A Toolbox for Intensity-Based Medical Image Registration , 2010, IEEE Transactions on Medical Imaging.

[119]  J. Young,et al.  Importance of cysteines in the LDLR-related domain of the subgroup A avian leukosis and sarcoma virus receptor for viral entry , 1995, Journal of virology.

[120]  Stefan Klein,et al.  Nonrigid registration of dynamic medical imaging data using nD + t B-splines and a groupwise optimization approach , 2011, Medical Image Anal..

[121]  H. Seung,et al.  Serial two-photon tomography: an automated method for ex-vivo mouse brain imaging , 2011, Nature Methods.

[122]  A. Graybiel,et al.  The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson's disease. , 1999, Brain : a journal of neurology.