Precision diabetes: learning from monogenic diabetes

[1]  M. McCarthy,et al.  Painting a new picture of personalised medicine for diabetes , 2017, Diabetologia.

[2]  M. McCarthy,et al.  The Common p.R114W HNF4A Mutation Causes a Distinct Clinical Subtype of Monogenic Diabetes , 2016, Diabetes.

[3]  Stephen C. J. Parker,et al.  The genetic architecture of type 2 diabetes , 2016, Nature.

[4]  B. Shields,et al.  Systematic Population Screening, Using Biomarkers and Genetic Testing, Identifies 2.5% of the U.K. Pediatric Diabetes Population With Monogenic Diabetes , 2016, Diabetes Care.

[5]  E. Pearson,et al.  Pharmacogenetics in type 2 diabetes: influence on response to oral hypoglycemic agents , 2016, Pharmacogenomics and personalized medicine.

[6]  L. Couchman,et al.  Commercial insulin immunoassays fail to detect commonly prescribed insulin analogues. , 2015, Clinical biochemistry.

[7]  E. Segal,et al.  Personalized Nutrition by Prediction of Glycemic Responses , 2015, Cell.

[8]  R. Scharfmann,et al.  Sulfonylurea Therapy Benefits Neurological and Psychomotor Functions in Patients With Neonatal Diabetes Owing to Potassium Channel Mutations , 2015, Diabetes Care.

[9]  A. Hattersley,et al.  The effect of early, comprehensive genomic testing on clinical care in neonatal diabetes: an international cohort study , 2015, The Lancet.

[10]  B. Shields,et al.  Markers of β-Cell Failure Predict Poor Glycemic Response to GLP-1 Receptor Agonist Therapy in Type 2 Diabetes , 2015, Diabetes Care.

[11]  B. Shields,et al.  Recognition and Management of Individuals With Hyperglycemia Because of a Heterozygous Glucokinase Mutation , 2015, Diabetes Care.

[12]  E. Bonora,et al.  Abstracts of 51st EASD Annual Meeting , 2015, Diabetologia.

[13]  J. Kere,et al.  Activating germline mutations in STAT3 cause early-onset multi-organ autoimmune disease , 2014, Nature Genetics.

[14]  Tiinamaija Tuomi,et al.  The many faces of diabetes: a disease with increasing heterogeneity , 2014, The Lancet.

[15]  S. C. Mannurita,et al.  Single centre experience of haematopoietic SCT for patients with immunodysregulation, polyendocrinopathy, enteropathy, X-linked syndrome , 2014, Bone Marrow Transplantation.

[16]  B. Shields,et al.  Prevalence of vascular complications among patients with glucokinase mutations and prolonged, mild hyperglycemia. , 2014, JAMA.

[17]  Aaron N. Winn,et al.  Cost-Effectiveness of MODY Genetic Testing: Translating Genomic Advances Into Practical Health Applications , 2013, Diabetes Care.

[18]  Stefan Johansson,et al.  Assessing the phenotypic effects in the general population of rare variants in genes for a dominant Mendelian form of diabetes , 2013, Nature Genetics.

[19]  B. Shields,et al.  Cross-sectional and longitudinal studies suggest pharmacological treatment used in patients with glucokinase mutations does not alter glycaemia , 2013, Diabetologia.

[20]  M. Weedon,et al.  Improved genetic testing for monogenic diabetes using targeted next-generation sequencing , 2013, Diabetologia.

[21]  A. Hattersley,et al.  Prevalence, characteristics and clinical diagnosis of maturity onset diabetes of the young due to mutations in HNF1A, HNF4A, and glucokinase: results from the SEARCH for Diabetes in Youth. , 2013, The Journal of clinical endocrinology and metabolism.

[22]  A. Hattersley,et al.  KATP channel mutations in infants with permanent diabetes diagnosed after 6 months of life , 2012, Pediatric diabetes.

[23]  B. Shields,et al.  The development and validation of a clinical prediction model to determine the probability of MODY in patients with young-onset diabetes , 2012, Diabetologia.

[24]  P. Bingley,et al.  Islet autoantibodies can discriminate maturity‐onset diabetes of the young (MODY) from Type 1 diabetes , 2011, Diabetic medicine : a journal of the British Diabetic Association.

[25]  F. Cadario,et al.  No beta cell desensitisation after a median of 68 months on glibenclamide therapy in patients with KCNJ11-associated permanent neonatal diabetes , 2011, Diabetologia.

[26]  Nisa M. Maruthur,et al.  Comparative Effectiveness and Safety of Medications for Type 2 Diabetes: An Update Including New Drugs and 2-Drug Combinations , 2011, Annals of Internal Medicine.

[27]  T. Meissner,et al.  Genetic and clinical characteristics of patients with HNF1A gene variations from the German-Austrian DPV database. , 2011, European journal of endocrinology.

[28]  Aaron N. Winn,et al.  The Cost-Effectiveness of Personalized Genetic Medicine , 2011, Diabetes Care.

[29]  B. Shields,et al.  Urinary C-Peptide Creatinine Ratio Is a Practical Outpatient Tool for Identifying Hepatocyte Nuclear Factor 1-α/Hepatocyte Nuclear Factor 4-α Maturity-Onset Diabetes of the Young From Long-Duration Type 1 Diabetes , 2011, Diabetes Care.

[30]  B. Shields,et al.  Maturity-onset diabetes of the young (MODY): how many cases are we missing? , 2010, Diabetologia.

[31]  A. Hattersley,et al.  Pregnancy outcome in patients with raised blood glucose due to a heterozygous glucokinase gene mutation , 2009, Diabetic medicine : a journal of the British Diabetic Association.

[32]  K. Polonsky,et al.  Standardization of C-peptide measurements. , 2008, Clinical chemistry.

[33]  A. Hattersley,et al.  Clinical implications of a molecular genetic classification of monogenic β-cell diabetes , 2008, Nature Clinical Practice Endocrinology &Metabolism.

[34]  M. McCarthy,et al.  Learning From Molecular Genetics Novel Insights Arising From the Definition of Genes for Monogenic and Type 2 Diabetes , 2008 .

[35]  B. Olsen,et al.  Thiamine‐responsive megaloblastic anaemia: a cause of syndromic diabetes in childhood , 2007, Pediatric diabetes.

[36]  G. Ferns,et al.  The biochemical assessment of insulin resistance , 2007, Annals of clinical biochemistry.

[37]  A. Hattersley,et al.  ISPAD Clinical Practice Consensus Guidelines 2006–2007
The diagnosis and management of monogenic diabetes in children , 2006, Pediatric diabetes.

[38]  F. Ashcroft,et al.  Switching from insulin to oral sulfonylureas in patients with diabetes due to Kir6.2 mutations. , 2006, The New England journal of medicine.

[39]  P. Bingley,et al.  HLA Genotyping Supports a Nonautoimmune Etiology in Patients Diagnosed With Diabetes Under the Age of 6 Months , 2006, Diabetes.

[40]  A. Hattersley,et al.  KCNJ11 activating mutations are associated with developmental delay, epilepsy and neonatal diabetes syndrome and other neurological features , 2006, European Journal of Human Genetics.

[41]  F. Ashcroft,et al.  Activating mutations in Kir6.2 and neonatal diabetes: new clinical syndromes, new scientific insights, and new therapy. , 2005, Diabetes.

[42]  T. Hansen,et al.  Molecular genetics and phenotypic characteristics of MODY caused by hepatocyte nuclear factor 4α mutations in a large European collection , 2005, Diabetologia.

[43]  A. Hattersley,et al.  Permanent neonatal diabetes due to mutations in KCNJ11 encoding Kir6.2: patient characteristics and initial response to sulfonylurea therapy. , 2004, Diabetes.

[44]  A. Hattersley,et al.  Contrasting Diabetes Phenotypes Associated With Hepatocyte Nuclear Factor-1α and -1β Mutations , 2004 .

[45]  A. Hattersley,et al.  Contrasting diabetes phenotypes associated with hepatocyte nuclear factor-1alpha and -1beta mutations. , 2004, Diabetes care.

[46]  A. Hattersley,et al.  Genetic cause of hyperglycaemia and response to treatment in diabetes , 2003, The Lancet.

[47]  M. Martinetti,et al.  Permanent diabetes mellitus in the first year of life , 2002, Diabetologia.

[48]  E. Guenat,et al.  Counterregulatory responses to hypoglycemia in patients with glucokinase gene mutations. , 2000, Diabetes & metabolism.

[49]  A. Hattersley,et al.  Sensitivity to sulphonylureas in patients with hepatocyte nuclear factor‐1α gene mutations: evidence for pharmacogenetics in diabetes , 2000, Diabetic medicine : a journal of the British Diabetic Association.

[50]  Hiroyuki Kuroki,et al.  Mutation in hepatocyte nuclear factor–1β gene (TCF2) associated with MODY , 1997, Nature Genetics.

[51]  G. Bell,et al.  Mutation in hepatocyte nuclear factor-1 beta gene (TCF2) associated with MODY. , 1997, Nature genetics.

[52]  T. Hansen,et al.  Mutations in the hepatocyte nuclear factor-1α gene in maturity-onset diabetes of the young (MODY3) , 1996, Nature.

[53]  M. Stoffel,et al.  Mutations in the hepatocyte nuclear factor-4α gene in maturity-onset diabetes of the young (MODY1) , 1996, Nature.

[54]  E. Mosekilde,et al.  Compensation in Pancreatic β-Cell Function in Subjects With Glucokinase Mutations , 1994, Diabetes.

[55]  A. Hattersley,et al.  Linkage of type 2 diabetes to the glucokinase gene , 1992, The Lancet.

[56]  J. Beckmann,et al.  Close linkage of glucokinase locus on chromosome 7p to early-onset non-insulin-dependent diabetes mellitus , 1992, Nature.

[57]  Tattersall Rb,et al.  Prevalence of diabetes and glucose intolerance in 199 offspring of thirty-seven conjugal diabetic parents. , 1975 .

[58]  R. Tattersall,et al.  Prevalence of Diabetes and Glucose Intolerance in 199 Offspring of Thirty-seven Conjugal Diabetic Parents , 1975, Diabetes.

[59]  R. Tattersall Mild familial diabetes with dominant inheritance. , 1974, The Quarterly journal of medicine.