Sparse Gaussian Process Variational Autoencoders

Large, multi-dimensional spatio-temporal datasets are omnipresent in modern science and engineering. An effective framework for handling such data are Gaussian process deep generative models (GP-DGMs), which employ GP priors over the latent variables of DGMs. Existing approaches for performing inference in GP-DGMs do not support sparse GP approximations based on inducing points, which are essential for the computational efficiency of GPs, nor do they handle missing data – a natural occurrence in many spatio-temporal datasets – in a principled manner. We address these shortcomings with the development of the sparse Gaussian process variational autoencoder (SGP-VAE), characterised by the use of partial inference networks for parameterising sparse GP approximations. Leveraging the benefits of amortised variational inference, the SGP-VAE enables inference in multi-output sparse GPs on previously unobserved data with no additional training. The SGP-VAE is evaluated in a variety of experiments where it outperforms alternative approaches including multi-output GPs and structured VAEs.

[1]  Yee Whye Teh,et al.  Semiparametric latent factor models , 2005, AISTATS.

[2]  Richard E. Turner,et al.  The Gaussian Process Autoregressive Regression Model (GPAR) , 2018, AISTATS.

[3]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[4]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[5]  A. Karpatne,et al.  Spatio-Temporal Data Mining: A Survey of Problems and Methods , 2017, ArXiv.

[6]  Edwin V. Bonilla,et al.  Multi-task Gaussian Process Prediction , 2007, NIPS.

[7]  Harri Lähdesmäki,et al.  Longitudinal Variational Autoencoder , 2020, ArXiv.

[8]  Michael Pearce,et al.  The Gaussian Process Prior VAE for Interpretable Latent Dynamics from Pixels , 2019, AABI.

[9]  Timothy C. Coburn,et al.  Geostatistics for Natural Resources Evaluation , 2000, Technometrics.

[10]  Richard E. Turner,et al.  A Unifying Framework for Gaussian Process Pseudo-Point Approximations using Power Expectation Propagation , 2016, J. Mach. Learn. Res..

[11]  Leonidas J. Guibas,et al.  PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[12]  Kevin Murphy,et al.  Generative Models of Visually Grounded Imagination , 2017, ICLR.

[13]  Neil D. Lawrence,et al.  Hierarchical Gaussian process latent variable models , 2007, ICML '07.

[14]  Luca Saglietti,et al.  Gaussian Process Prior Variational Autoencoders , 2018, NeurIPS.

[15]  Neil D. Lawrence,et al.  Computationally Efficient Convolved Multiple Output Gaussian Processes , 2011, J. Mach. Learn. Res..

[16]  Michael E. Tipping,et al.  Probabilistic Principal Component Analysis , 1999 .

[17]  Neil D. Lawrence,et al.  Gaussian Process Latent Variable Models for Visualisation of High Dimensional Data , 2003, NIPS.

[18]  Pietro Lio,et al.  tvGP-VAE: Tensor-variate Gaussian Process Prior Variational Autoencoder , 2020, ArXiv.

[19]  Ryan P. Adams,et al.  Composing graphical models with neural networks for structured representations and fast inference , 2016, NIPS.

[20]  Neil D. Lawrence,et al.  Deep Gaussian Processes , 2012, AISTATS.

[21]  Richard E. Turner,et al.  Two problems with variational expectation maximisation for time-series models , 2011 .

[22]  Pablo M. Olmos,et al.  Handling Incomplete Heterogeneous Data using VAEs , 2018, Pattern Recognit..

[23]  Michalis K. Titsias,et al.  Variational Learning of Inducing Variables in Sparse Gaussian Processes , 2009, AISTATS.

[24]  Mohammad Emtiyaz Khan,et al.  Variational Message Passing with Structured Inference Networks , 2018, ICLR.

[25]  Stephan Mandt,et al.  GP-VAE: Deep Probabilistic Time Series Imputation , 2020, AISTATS.

[26]  Manfred Opper,et al.  The Variational Gaussian Approximation Revisited , 2009, Neural Computation.

[27]  Alexander J. Smola,et al.  Deep Sets , 2017, 1703.06114.

[28]  Sebastian Nowozin,et al.  EDDI: Efficient Dynamic Discovery of High-Value Information with Partial VAE , 2018, ICML.

[29]  John P. Cunningham,et al.  Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population activity , 2008, NIPS.