暂无分享,去创建一个
Richard E. Turner | Michael Pearce | Vincent Fortuin | Matthew Ashman | Jonathan So | William Tebbutt | Will Tebbutt | Vincent Fortuin | Michael Pearce | Matthew Ashman | Jonathan So
[1] Yee Whye Teh,et al. Semiparametric latent factor models , 2005, AISTATS.
[2] Richard E. Turner,et al. The Gaussian Process Autoregressive Regression Model (GPAR) , 2018, AISTATS.
[3] Jimmy Ba,et al. Adam: A Method for Stochastic Optimization , 2014, ICLR.
[4] Max Welling,et al. Auto-Encoding Variational Bayes , 2013, ICLR.
[5] A. Karpatne,et al. Spatio-Temporal Data Mining: A Survey of Problems and Methods , 2017, ArXiv.
[6] Edwin V. Bonilla,et al. Multi-task Gaussian Process Prediction , 2007, NIPS.
[7] Harri Lähdesmäki,et al. Longitudinal Variational Autoencoder , 2020, ArXiv.
[8] Michael Pearce,et al. The Gaussian Process Prior VAE for Interpretable Latent Dynamics from Pixels , 2019, AABI.
[9] Timothy C. Coburn,et al. Geostatistics for Natural Resources Evaluation , 2000, Technometrics.
[10] Richard E. Turner,et al. A Unifying Framework for Gaussian Process Pseudo-Point Approximations using Power Expectation Propagation , 2016, J. Mach. Learn. Res..
[11] Leonidas J. Guibas,et al. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[12] Kevin Murphy,et al. Generative Models of Visually Grounded Imagination , 2017, ICLR.
[13] Neil D. Lawrence,et al. Hierarchical Gaussian process latent variable models , 2007, ICML '07.
[14] Luca Saglietti,et al. Gaussian Process Prior Variational Autoencoders , 2018, NeurIPS.
[15] Neil D. Lawrence,et al. Computationally Efficient Convolved Multiple Output Gaussian Processes , 2011, J. Mach. Learn. Res..
[16] Michael E. Tipping,et al. Probabilistic Principal Component Analysis , 1999 .
[17] Neil D. Lawrence,et al. Gaussian Process Latent Variable Models for Visualisation of High Dimensional Data , 2003, NIPS.
[18] Pietro Lio,et al. tvGP-VAE: Tensor-variate Gaussian Process Prior Variational Autoencoder , 2020, ArXiv.
[19] Ryan P. Adams,et al. Composing graphical models with neural networks for structured representations and fast inference , 2016, NIPS.
[20] Neil D. Lawrence,et al. Deep Gaussian Processes , 2012, AISTATS.
[21] Richard E. Turner,et al. Two problems with variational expectation maximisation for time-series models , 2011 .
[22] Pablo M. Olmos,et al. Handling Incomplete Heterogeneous Data using VAEs , 2018, Pattern Recognit..
[23] Michalis K. Titsias,et al. Variational Learning of Inducing Variables in Sparse Gaussian Processes , 2009, AISTATS.
[24] Mohammad Emtiyaz Khan,et al. Variational Message Passing with Structured Inference Networks , 2018, ICLR.
[25] Stephan Mandt,et al. GP-VAE: Deep Probabilistic Time Series Imputation , 2020, AISTATS.
[26] Manfred Opper,et al. The Variational Gaussian Approximation Revisited , 2009, Neural Computation.
[27] Alexander J. Smola,et al. Deep Sets , 2017, 1703.06114.
[28] Sebastian Nowozin,et al. EDDI: Efficient Dynamic Discovery of High-Value Information with Partial VAE , 2018, ICML.
[29] John P. Cunningham,et al. Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population activity , 2008, NIPS.