Neuronal cell-type classification: challenges, opportunities and the path forward

Neurons have diverse molecular, morphological, connectional and functional properties. We believe that the only realistic way to manage this complexity — and thereby pave the way for understanding the structure, function and development of brain circuits — is to group neurons into types, which can then be analysed systematically and reproducibly. However, neuronal classification has been challenging both technically and conceptually. New high-throughput methods have created opportunities to address the technical challenges associated with neuronal classification by collecting comprehensive information about individual cells. Nonetheless, conceptual difficulties persist. Borrowing from the field of species taxonomy, we propose principles to be followed in the cell-type classification effort, including the incorporation of multiple, quantitative features as criteria, the use of discontinuous variation to define types and the creation of a hierarchical system to represent relationships between cells. We review the progress of classifying cell types in the retina and cerebral cortex and propose a staged approach for moving forward with a systematic cell-type classification in the nervous system.

[1]  Ramón y Cajal,et al.  Histologie du système nerveux de l'homme & des vertébrés , 1909 .

[2]  C. Waddington,et al.  The strategy of the genes , 1957 .

[3]  Hilla Peretz,et al.  Ju n 20 03 Schrödinger ’ s Cat : The rules of engagement , 2003 .

[4]  H B Barlow,et al.  Direction-Selective Units in Rabbit Retina: Distribution of Preferred Directions , 1967, Science.

[5]  C F Tyner,et al.  The naming of neurons: applications of taxonomic theory to the study of cellular populations. , 1975, Brain, behavior and evolution.

[6]  J. Stone,et al.  Naming of neurones. Classification and naming of cat retinal ganglion cells. , 1977, Brain, behavior and evolution.

[7]  J. Stone,et al.  The interpretation of variation in the classification of nerve cells. , 1980, Brain, behavior and evolution.

[8]  J. Sulston,et al.  The embryonic cell lineage of the nematode Caenorhabditis elegans. , 1983, Developmental biology.

[9]  R W Rodieck,et al.  Retinal ganglion cells: properties, types, genera, pathways and trans-species comparisons. , 1983, Brain, behavior and evolution.

[10]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[11]  E. G. Jones Cerebral Cortex , 1987, Cerebral Cortex.

[12]  David J. Anderson,et al.  The neural crest cell lineage problem: Neuropoiesis? , 1989, Neuron.

[13]  J. Sanes,et al.  Lineage, arrangement, and death of clonally related motoneurons in chick spinal cord , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[14]  C. Stevens,et al.  Neuronal diversity: Too many cell types for comfort? , 1998, Current Biology.

[15]  F. Crick,et al.  The impact of molecular biology on neuroscience. , 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[16]  R. Douglas,et al.  Neuronal circuits of the neocortex. , 2004, Annual review of neuroscience.

[17]  W. Denk,et al.  Serial Block-Face Scanning Electron Microscopy to Reconstruct Three-Dimensional Tissue Nanostructure , 2004, PLoS biology.

[18]  R. Masland Neuronal cell types , 2004, Current Biology.

[19]  H. Markram,et al.  Interneurons of the neocortical inhibitory system , 2004, Nature Reviews Neuroscience.

[20]  D. O'Leary,et al.  Molecular gradients and development of retinotopic maps. , 2005, Annual review of neuroscience.

[21]  D. Faber,et al.  The Mauthner Cell Half a Century Later: A Neurobiological Model for Decision-Making? , 2005, Neuron.

[22]  P. Somogyi,et al.  Defined types of cortical interneurone structure space and spike timing in the hippocampus , 2005, The Journal of physiology.

[23]  G. Shepherd,et al.  An integrated approach to classifying neuronal phenotypes , 2005, Nature Reviews Neuroscience.

[24]  A. Agmon,et al.  Distinct Subtypes of Somatostatin-Containing Neocortical Interneurons Revealed in Transgenic Mice , 2006, The Journal of Neuroscience.

[25]  S. Nelson,et al.  The problem of neuronal cell types: a physiological genomics approach , 2006, Trends in Neurosciences.

[26]  Wouter Houthoofd,et al.  The embryonic cell lineage of the nematode Halicephalobus gingivalis (Nematoda: Cephalobina: Panagrolaimoidea) , 2007 .

[27]  P. Arlotta,et al.  Neuronal subtype specification in the cerebral cortex , 2007, Nature Reviews Neuroscience.

[28]  R. Reid,et al.  Specificity and randomness in the visual cortex , 2007, Current Opinion in Neurobiology.

[29]  B. Dickson,et al.  A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila , 2007, Nature.

[30]  Charles R. Gerfen,et al.  Targeting Cre Recombinase to Specific Neuron Populations with Bacterial Artificial Chromosome Constructs , 2007, The Journal of Neuroscience.

[31]  Larry W. Swanson,et al.  The neuron classification problem , 2007, Brain Research Reviews.

[32]  E. P. Gardner,et al.  Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex , 2008, Nature Reviews Neuroscience.

[33]  P. Somogyi,et al.  Neuronal Diversity and Temporal Dynamics: The Unity of Hippocampal Circuit Operations , 2008, Science.

[34]  G. Knott,et al.  Serial Section Scanning Electron Microscopy of Adult Brain Tissue Using Focused Ion Beam Milling , 2008, The Journal of Neuroscience.

[35]  J. Sanes,et al.  Molecular identification of a retinal cell type that responds to upward motion , 2008, Nature.

[36]  B. Roska,et al.  Genetic address book for retinal cell types , 2009, Nature Neuroscience.

[37]  Andrew G. McDonald,et al.  ExplorEnz: the primary source of the IUBMB enzyme list , 2008, Nucleic Acids Res..

[38]  H. Wässle,et al.  Cone Contacts, Mosaics, and Territories of Bipolar Cells in the Mouse Retina , 2009, The Journal of Neuroscience.

[39]  W. Harris,et al.  From progenitors to differentiated cells in the vertebrate retina. , 2009, Annual review of cell and developmental biology.

[40]  J. Sanes,et al.  Chemoaffinity Revisited: Dscams, Protocadherins, and Neural Circuit Assembly , 2010, Cell.

[41]  J. Sanes,et al.  Design Principles of Insect and Vertebrate Visual Systems , 2010, Neuron.

[42]  Ola Söderberg,et al.  In situ detection and genotyping of individual mRNA molecules , 2010, Nature Methods.

[43]  S. Brenner Sequences and consequences , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[44]  Kevin L. Briggman,et al.  Wiring specificity in the direction-selectivity circuit of the retina , 2011, Nature.

[45]  Arthur W. Wetzel,et al.  Network anatomy and in vivo physiology of visual cortical neurons , 2011, Nature.

[46]  S. Linnarsson,et al.  Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. , 2011, Genome research.

[47]  G. Fishell,et al.  Mechanisms of inhibition within the telencephalon: "where the wild things are". , 2011, Annual review of neuroscience.

[48]  A. Gamal,et al.  Miniaturized integration of a fluorescence microscope , 2011, Nature Methods.

[49]  Guan-Yu Chen,et al.  Three-Dimensional Reconstruction of Brain-wide Wiring Networks in Drosophila at Single-Cell Resolution , 2011, Current Biology.

[50]  Stefan Offermanns,et al.  International Union of Basic and Clinical Pharmacology. LXXXII: Nomenclature and Classification of Hydroxy-carboxylic Acid Receptors (GPR81, GPR109A, and GPR109B) , 2011, Pharmacological Reviews.

[51]  G. Fishell,et al.  Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons , 2011, Developmental neurobiology.

[52]  S. Nelson,et al.  A Resource of Cre Driver Lines for Genetic Targeting of GABAergic Neurons in Cerebral Cortex , 2011, Neuron.

[53]  Long Cai,et al.  Single cell systems biology by super-resolution imaging and combinatorial labeling , 2012, Nature Methods.

[54]  R Clay Reid,et al.  From Functional Architecture to Functional Connectomics , 2012, Neuron.

[55]  R. Sandberg,et al.  Full-Length mRNA-Seq from single cell levels of RNA and individual circulating tumor cells , 2012, Nature Biotechnology.

[56]  J. N. Kay,et al.  MEGF10 AND 11 MEDIATE HOMOTYPIC INTERACTIONS REQUIRED FOR MOSAIC SPACING OF RETINAL NEURONS , 2012, Nature.

[57]  T. Hashimshony,et al.  CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification. , 2012, Cell reports.

[58]  Gerald M Rubin,et al.  A resource for manipulating gene expression and analyzing cis-regulatory modules in the Drosophila CNS. , 2012, Cell reports.

[59]  Julie H. Simpson,et al.  A GAL4-driver line resource for Drosophila neurobiology. , 2012, Cell reports.

[60]  R. Masland The Neuronal Organization of the Retina , 2012, Neuron.

[61]  T. Kita,et al.  The Subthalamic Nucleus Is One of Multiple Innervation Sites for Long-Range Corticofugal Axons: A Single-Axon Tracing Study in the Rat , 2012, The Journal of Neuroscience.

[62]  Philipp J. Keller,et al.  Whole-brain functional imaging at cellular resolution using light-sheet microscopy , 2013, Nature Methods.

[63]  J. D. Macklis,et al.  Molecular logic of neocortical projection neuron specification, development and diversity , 2013, Nature Reviews Neuroscience.

[64]  E. Shapiro,et al.  Single-cell sequencing-based technologies will revolutionize whole-organism science , 2013, Nature Reviews Genetics.

[65]  Yves Kremer,et al.  Membrane Potential Dynamics of Neocortical Projection Neurons Driving Target-Specific Signals , 2013, Neuron.

[66]  Louis K. Scheffer,et al.  A visual motion detection circuit suggested by Drosophila connectomics , 2013, Nature.

[67]  R. Clay Reid,et al.  Chronic Cellular Imaging of Entire Cortical Columns in Awake Mice Using Microprisms , 2013, Neuron.

[68]  Gord Fishell,et al.  The Neuron Identity Problem: Form Meets Function , 2013, Neuron.

[69]  Stefan R. Pulver,et al.  Ultra-sensitive fluorescent proteins for imaging neuronal activity , 2013, Nature.

[70]  Hongkui Zeng,et al.  Genetic approaches to neural circuits in the mouse. , 2013, Annual review of neuroscience.

[71]  Carolina Wählby,et al.  In situ sequencing for RNA analysis in preserved tissue and cells , 2013, Nature Methods.

[72]  Shaoqun Zeng,et al.  Continuously tracing brain-wide long-distance axonal projections in mice at a one-micron voxel resolution , 2013, NeuroImage.

[73]  Lacey J. Kitch,et al.  Long-term dynamics of CA1 hippocampal place codes , 2013, Nature Neuroscience.

[74]  C. Gerfen,et al.  GENSAT BAC Cre-Recombinase Driver Lines to Study the Functional Organization of Cerebral Cortical and Basal Ganglia Circuits , 2013, Neuron.

[75]  Åsa K. Björklund,et al.  Smart-seq2 for sensitive full-length transcriptome profiling in single cells , 2013 .

[76]  Srinivas C. Turaga,et al.  Connectomic reconstruction of the inner plexiform layer in the mouse retina , 2013, Nature.

[77]  Thomas Euler,et al.  Retinal bipolar cells: elementary building blocks of vision , 2014, Nature Reviews Neuroscience.

[78]  Srinivas C. Turaga,et al.  Space-time wiring specificity supports direction selectivity in the retina , 2014, Nature.

[79]  Gioele La Manno,et al.  Quantitative single-cell RNA-seq with unique molecular identifiers , 2013, Nature Methods.

[80]  George M. Church,et al.  Highly Multiplexed Subcellular RNA Sequencing in Situ , 2014, Science.

[81]  Ian R. Wickersham,et al.  The Stimulus Selectivity and Connectivity of Layer Six Principal Cells Reveals Cortical Microcircuits Underlying Visual Processing , 2014, Neuron.

[82]  Staci A. Sorensen,et al.  Anatomical characterization of Cre driver mice for neural circuit mapping and manipulation , 2014, Front. Neural Circuits.

[83]  Sen Song,et al.  A genetic and computational approach to structurally classify neuronal types , 2014, Nature Communications.

[84]  David Grant Colburn Hildebrand,et al.  Imaging ATUM ultrathin section libraries with WaferMapper: a multi-scale approach to EM reconstruction of neural circuits , 2014, Front. Neural Circuits.

[85]  G. Fishell,et al.  Interneuron cell types are fit to function , 2014, Nature.

[86]  O. Hobert,et al.  Maintenance of postmitotic neuronal cell identity , 2014, Nature Neuroscience.

[87]  Alex A. Pollen,et al.  Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex , 2014, Nature Biotechnology.

[88]  H. Seung,et al.  Neuronal Cell Types and Connectivity: Lessons from the Retina , 2014, Neuron.

[89]  Tsai-Wen Chen,et al.  Comprehensive imaging of cortical networks , 2015, Current Opinion in Neurobiology.

[90]  Sean L. Hill,et al.  BigNeuron: Large-Scale 3D Neuron Reconstruction from Optical Microscopy Images , 2015, Neuron.

[91]  J. Sanes,et al.  The types of retinal ganglion cells: current status and implications for neuronal classification. , 2015, Annual review of neuroscience.

[92]  S. Linnarsson,et al.  Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq , 2015, Science.

[93]  William R. Gray Roncal,et al.  Saturated Reconstruction of a Volume of Neocortex , 2015, Cell.

[94]  Nicholas C Spitzer,et al.  Neurotransmitter Switching? No Surprise , 2015, Neuron.

[95]  E. Callaway,et al.  Three Types of Cortical Layer 5 Neurons That Differ in Brain-wide Connectivity and Function , 2015, Neuron.

[96]  O. Sporns,et al.  Connectomics-Based Analysis of Information Flow in the Drosophila Brain , 2015, Current Biology.

[97]  Alexander S. Ecker,et al.  Principles of connectivity among morphologically defined cell types in adult neocortex , 2015, Science.

[98]  S. Quake,et al.  A survey of human brain transcriptome diversity at the single cell level , 2015, Proceedings of the National Academy of Sciences.

[99]  Allon M. Klein,et al.  Droplet Barcoding for Single-Cell Transcriptomics Applied to Embryonic Stem Cells , 2015, Cell.

[100]  James G. King,et al.  Reconstruction and Simulation of Neocortical Microcircuitry , 2015, Cell.

[101]  W. Harris,et al.  The Independent Probabilistic Firing of Transcription Factors: A Paradigm for Clonal Variability in the Zebrafish Retina , 2015, Developmental cell.

[102]  Evan Z. Macosko,et al.  Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets , 2015, Cell.

[103]  Douglas J. Bakkum,et al.  Revealing neuronal function through microelectrode array recordings , 2015, Front. Neurosci..

[104]  Mathew W. Wright,et al.  International Union of Basic and Clinical Pharmacology. XCIV. Adhesion G Protein–Coupled Receptors , 2015, Pharmacological Reviews.

[105]  S. Linnarsson,et al.  Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing , 2014, Nature Neuroscience.

[106]  B. Reese,et al.  Design principles and developmental mechanisms underlying retinal mosaics , 2015, Biological reviews of the Cambridge Philosophical Society.

[107]  X. Zhuang,et al.  Spatially resolved, highly multiplexed RNA profiling in single cells , 2015, Science.

[108]  G. Shepherd,et al.  The neocortical circuit: themes and variations , 2015, Nature Neuroscience.

[109]  Alex A. Pollen,et al.  Molecular Identity of Human Outer Radial Glia during Cortical Development , 2015, Cell.

[110]  A. L. Eberle,et al.  High-resolution, high-throughput imaging with a multibeam scanning electron microscope , 2015, Journal of microscopy.

[111]  Oscar Marín,et al.  Tuning of fast-spiking interneuron properties by an activity-dependent transcriptional switch , 2015, Science.

[112]  Cole Trapnell,et al.  Defining cell types and states with single-cell genomics , 2015, Genome research.

[113]  Yang Dan,et al.  Calcium imaging of sleep–wake related neuronal activity in the dorsal pons , 2016, Nature Communications.

[114]  James M. Otis,et al.  Visualization of cortical, subcortical and deep brain neural circuit dynamics during naturalistic mammalian behavior with head-mounted microscopes and chronically implanted lenses , 2016, Nature Protocols.

[115]  Staci A. Sorensen,et al.  Adult Mouse Cortical Cell Taxonomy Revealed by Single Cell Transcriptomics , 2016 .

[116]  Jesper Andersson,et al.  A multi-modal parcellation of human cerebral cortex , 2016, Nature.

[117]  Athanasia G. Palasantza,et al.  Electrophysiological, transcriptomic and morphologic profiling of single neurons using Patch-seq , 2015, Nature Biotechnology.

[118]  Grace X. Y. Zheng,et al.  Massively parallel digital transcriptional profiling of single cells , 2016, bioRxiv.

[119]  Daniel R. Berger,et al.  The Fuzzy Logic of Network Connectivity in Mouse Visual Thalamus , 2016, Cell.

[120]  Jens Hjerling-Leffler,et al.  Disentangling neural cell diversity using single-cell transcriptomics , 2016, Nature Neuroscience.

[121]  G. Wagner,et al.  The origin and evolution of cell types , 2016, Nature Reviews Genetics.

[122]  K. Svoboda,et al.  A large field of view two-photon mesoscope with subcellular resolution for in vivo imaging , 2016, bioRxiv.

[123]  Jeffrey R Moffitt,et al.  High-performance multiplexed fluorescence in situ hybridization in culture and tissue with matrix imprinting and clearing , 2016, Proceedings of the National Academy of Sciences.

[124]  Matthias Bethge,et al.  The functional diversity of retinal ganglion cells in the mouse , 2015, Nature.

[125]  A. Regev,et al.  Revealing the vectors of cellular identity with single-cell genomics , 2016, Nature Biotechnology.

[126]  F. Rieke,et al.  Glutamatergic Monopolar Interneurons Provide a Novel Pathway of Excitation in the Mouse Retina , 2016, Current Biology.

[127]  Cynthia C. Hession,et al.  Div-Seq: Single-nucleus RNA-Seq reveals dynamics of rare adult newborn neurons , 2016, Science.

[128]  Yuchio Yanagawa,et al.  Integration of electrophysiological recordings with single-cell RNA-seq data identifies novel neuronal subtypes , 2015, Nature Biotechnology.

[129]  Robert H. Brown,et al.  Decoding ALS: from genes to mechanism , 2016, Nature.

[130]  Björn Reinius,et al.  Comparative Analysis of Single-Cell RNA Sequencing Methods , 2016, bioRxiv.

[131]  M. Feller,et al.  Development of synaptic connectivity in the retinal direction selective circuit , 2016, Current Opinion in Neurobiology.

[132]  Haim Sompolinsky,et al.  From Whole-Brain Data to Functional Circuit Models: The Zebrafish Optomotor Response , 2016, Cell.

[133]  Shaoqun Zeng,et al.  High-throughput dual-colour precision imaging for brain-wide connectome with cytoarchitectonic landmarks at the cellular level , 2016, Nature Communications.

[134]  M. Ronaghi,et al.  Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brain , 2016, Science.

[135]  Evan Z. Macosko,et al.  Comprehensive Classification of Retinal Bipolar Neurons by Single-Cell Transcriptomics , 2016, Cell.

[136]  Srdjan D Antic,et al.  Voltage imaging to understand connections and functions of neuronal circuits. , 2016, Journal of neurophysiology.

[137]  Hongkui Zeng,et al.  Long-Term Optical Access to an Estimated One Million Neurons in the Live Mouse Cortex. , 2016, Cell reports.

[138]  Edward S Boyden,et al.  Nanoscale Imaging of RNA with Expansion Microscopy , 2016, Nature Methods.

[139]  Andreas Hierlemann,et al.  Congenital Nystagmus Gene FRMD7 Is Necessary for Establishing a Neuronal Circuit Asymmetry for Direction Selectivity , 2016, Neuron.

[140]  Sarah A. Teichmann,et al.  Power Analysis of Single Cell RNA-Sequencing Experiments , 2016 .

[141]  Brett J. Graham,et al.  Anatomy and function of an excitatory network in the visual cortex , 2016, Nature.

[142]  Albert Cardona,et al.  The wiring diagram of a glomerular olfactory system , 2016 .

[143]  L. Cai,et al.  In Situ Transcription Profiling of Single Cells Reveals Spatial Organization of Cells in the Mouse Hippocampus , 2016, Neuron.

[144]  H. Sebastian Seung,et al.  Analogous Convergence of Sustained and Transient Inputs in Parallel On and Off Pathways for Retinal Motion Computation , 2016, Cell reports.

[145]  Karel Svoboda,et al.  A platform for brain-wide imaging and reconstruction of individual neurons , 2016, eLife.

[146]  Mathew W. Wright,et al.  A review of the new HGNC gene family resource , 2016, Human Genomics.

[147]  Gregory S.X.E. Jefferis,et al.  NBLAST: Rapid, Sensitive Comparison of Neuronal Structure and Construction of Neuron Family Databases , 2016, Neuron.

[148]  Lan Bao,et al.  Somatosensory neuron types identified by high-coverage single-cell RNA-sequencing and functional heterogeneity , 2016, Cell Research.

[149]  R. Tremblay,et al.  GABAergic Interneurons in the Neocortex: From Cellular Properties to Circuits , 2016, Neuron.

[150]  Sara B. Linker,et al.  Using single nuclei for RNA-seq to capture the transcriptome of postmortem neurons , 2016, Nature Protocols.

[151]  Shuqiang Li,et al.  CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq , 2016, Genome Biology.

[152]  Conor Fitzpatrick,et al.  Nuclear RNA-seq of single neurons reveals molecular signatures of activation , 2016, Nature communications.

[153]  Hazen P Babcock,et al.  High-throughput single-cell gene-expression profiling with multiplexed error-robust fluorescence in situ hybridization , 2016, Proceedings of the National Academy of Sciences.

[154]  Yuchio Yanagawa,et al.  Molecular interrogation of hypothalamic organization reveals distinct dopamine neuronal subtypes , 2016, Nature Neuroscience.

[155]  Evan Z. Macosko,et al.  Genetically Distinct Parallel Pathways in the Entopeduncular Nucleus for Limbic and Sensorimotor Output of the Basal Ganglia , 2017, Neuron.

[156]  Weijian Yang,et al.  In vivo imaging of neural activity , 2017, Nature Methods.

[157]  Sridevi Polavaram,et al.  Win–win data sharing in neuroscience , 2017, Nature Methods.

[158]  M. Bethge,et al.  Inhibition decorrelates visual feature representations in the inner retina , 2017, Nature.

[159]  Chenghang Zong,et al.  Effective detection of variation in single-cell transcriptomes using MATQ-seq , 2017, Nature Methods.

[160]  Philipp Berens,et al.  Die Retina im Rausch der Kanäle , 2017, Klinische Monatsblätter für Augenheilkunde.

[161]  Evan Z. Macosko,et al.  A Molecular Census of Arcuate Hypothalamus and Median Eminence Cell Types , 2017, Nature Neuroscience.

[162]  Andreas S Tolias,et al.  In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain , 2017, Nature Methods.

[163]  Åsa K. Björklund,et al.  Single-Cell Analysis Reveals a Close Relationship between Differentiating Dopamine and Subthalamic Nucleus Neuronal Lineages. , 2017, Cell stem cell.

[164]  Fred A Hamprecht,et al.  Multicut brings automated neurite segmentation closer to human performance , 2017, Nature Methods.

[165]  Daniel R. Berger,et al.  Cell diversity and network dynamics in photosensitive human brain organoids , 2017, Nature.

[166]  Johannes D. Seelig,et al.  Video-rate volumetric functional imaging of the brain at synaptic resolution , 2016, Nature Neuroscience.