Geopolymer is a new class of three-dimensionally networked amorphous to semi-crystalline alumino-silicate materials, and first developed by Professor Joseph Davidovits in 1978. Geopolymers can be synthesized by mixing alumino–silicate reactive materials such as kaolin, metakaolin or pozzolans in strong alkaline solutions such as NaOH and KOH and then cured at room temperature. Heat treatment applied at higher temperatures may give better results. Depending on the mixture, the optimum temperature and duration vary 40-100 °C and 2-72 hours, respectively. The properties of geopolymeric paste depend on type of source material (fly ash, metakaolin, kaolin), type of activator (sodium silicate-sodium hydroxide, sodium silicate-potassium hydroxide), amount of activator, heat treatment temperature, and heat treatment duration. In this experimental investigation, geopolymeric bricks were produced by using F-type fly ash, sodium silicate, and sodium hydroxide solution. The bricks were treated at various temperatures for different hours. The compressive strength and density of F-type fly ash based geopolymeric bricks were determined at the ages of 7, 28 and 90 days. Test results have revealed that the compressive strength values of F-type fly ash based geobricks ranged between 5 and 60 MPa. It has been found that the effect of heat treatment temperature and heat treatment duration on the density of F-type fly ash based geobricks was not significant. It should be noted that the spherical particle size increased as the heat treatment temperature increased in the microstructure of F-type fly ash based geobricks treated in oven at the temperature of 60 °C for 24 hours.