Bounds and Constructions of Optimal ($n, 4, 2, 1$) Optical Orthogonal Codes

In this paper, a tight upper bound on the maximum possible code size of n, 4, 2, 1)-OOCs and some direct and recursive constructions of optimal (n, 4, 2, 1)-OOCs attaining the upper bound are given. As consequences, the following new infinite series of optimal (gn,4,2,1)-OOCs are obtained: i) g isin {1,7,11,19,23,31,35,59,71,79,131,179,191,239,251,271,311,359,379,419,431,439,479,491,499,571,599,631,659,719,739,751,839,971} or g is a prime < 1000 equiv 5 ( mod 8), and n=9<sup>h</sup>25<sup>i</sup>49<sup>i</sup>p<sub>1</sub>p<sub>2</sub>hellipp<sub>r</sub> where h isin {0,1}, i and j are arbitrary nonnegative integers, and each p<sub>i</sub> is a prime equiv 1 ( mod 8); ii) g = 2g' where g' isin {1,7,11,19,23,31,47,71,127,151,167,191,263,271,311,359,367,383,431,439,463,479,503,631,647,719,727,743,823,839,863,887,911,919,967,983,991} and n = p<sub>1</sub>p<sub>2</sub>hellipp<sub>r</sub> where each p<sub>i</sub> is a prime equiv 1 ( mod 4); iii) g isin {4,20} and n is any positive integer prime to 30; iv) g = 8 and n= p<sub>1</sub>p<sub>2</sub>hellipp<sub>r</sub> where each p<sub>i</sub> is a primary equiv 1 ( mod 4) greater than 5.

[1]  Fan Chung Graham,et al.  Optical orthogonal codes: Design, analysis, and applications , 1989, IEEE Trans. Inf. Theory.

[2]  Clement W. H. Lam,et al.  Difference Families , 2001, Des. Codes Cryptogr..

[3]  P. Vijay Kumar,et al.  Optical orthogonal codes-New bounds and an optimal construction , 1990, IEEE Trans. Inf. Theory.

[4]  Marco Buratti,et al.  Cyclic Designs with Block Size 4 and Related Optimal Optical Orthogonal Codes , 2002, Des. Codes Cryptogr..

[5]  R. Julian R. Abel,et al.  Some progress on (v, 4, 1) difference families and optical orthogonal codes , 2004, J. Comb. Theory, Ser. A.

[6]  M. Buratti Improving two theorems of bose on difference families , 1995 .

[7]  T. Etzion,et al.  Constructions for optimal constant weight cyclically permutable codes and difference families , 1994, Proceedings of 1994 IEEE International Symposium on Information Theory.

[8]  Jawad A. Salehi,et al.  Code division multiple-access techniques in optical fiber networks. II. Systems performance analysis , 1989, IEEE Trans. Commun..

[9]  Marco Buratti A packing problem its application to Bose's families , 1996 .

[10]  Charles J. Colbourn,et al.  Recursive constructions for optimal (n,4,2)-OOCs , 2004 .

[11]  Selmer M. Johnson A new upper bound for error-correcting codes , 1962, IRE Trans. Inf. Theory.

[12]  Yanxun Chang,et al.  Optimal (4up, 5, 1) optical orthogonal codes , 2004 .

[13]  Jianxing Yin,et al.  Some combinatorial constructions for optical orthogonal codes , 1998, Discret. Math..

[14]  Marco Buratti,et al.  Strong difference families over arbitrary graphs , 2008 .

[15]  G. Ge,et al.  Constructions for optimal (v, 4, 1) optical orthogonal codes , 2001, IEEE Trans. Inf. Theory.

[16]  Anita Pasotti,et al.  Graph decompositions with the use of difference matrices , 2006 .

[17]  O. Moreno,et al.  Multimedia transmission in fiber-optic LANs using optical CDMA , 1996 .

[18]  Hanfried Lenz,et al.  Design theory , 1985 .

[19]  Douglas R Stinson,et al.  Surveys in Combinatorics, 1999: Applications of Combinatorial Designs to Communications, Cryptography, and Networking , 1999 .

[20]  Yanxun Chang,et al.  A New Class of Optimal Optical Orthogonal Codes With Weight Five , 2004, IEEE Trans. Inf. Theory.

[21]  L. Zhu,et al.  Existence of (q,6,1) Difference Families withq a Prime Power , 1998, Des. Codes Cryptogr..

[22]  K. Chen,et al.  Existence of (q, k, 1) difference families with q a prime power and k = 4, 5 , 1999 .

[23]  Anita Pasotti,et al.  Combinatorial designs and the theorem of Weil on multiplicative character sums , 2009, Finite Fields Their Appl..

[24]  Ryoh Fuji-Hara,et al.  Optical orthogonal codes: Their bounds and new optimal constructions , 2000, IEEE Trans. Inf. Theory.

[25]  Yanxun Chang,et al.  Constructions for optimal optical orthogonal codes , 2003, Discret. Math..

[26]  Rudolf Lide,et al.  Finite fields , 1983 .

[27]  S. V. Maric,et al.  Multirate fiber-optic CDMA: system design and performance analysis , 1998 .

[28]  Solomon W. Golomb,et al.  A new recursive construction for optical orthogonal codes , 2003, IEEE Trans. Inf. Theory.

[29]  Richard M. Wilson,et al.  Cyclotomy and difference families in elementary abelian groups , 1972 .

[30]  Ryoh Fuji-Hara,et al.  Optimal (9v, 4, 1) Optical Orthogonal Codes , 2001, SIAM J. Discret. Math..

[31]  C. Colbourn,et al.  CORR 99-01 Applications of Combinatorial Designs to Communications , Cryptography , and Networking , 1999 .

[32]  K. Conrad,et al.  Finite Fields , 2018, Series and Products in the Development of Mathematics.

[33]  Marco Buratti Old and new designs via difference multisets and strong difference families , 1999 .

[34]  Jawad A. Salehi,et al.  Code division multiple-access techniques in optical fiber networks. I. Fundamental principles , 1989, IEEE Trans. Commun..

[35]  Yanxun Chang,et al.  Combinatorial constructions of optimal optical orthogonal codes with weight 4 , 2003, IEEE Trans. Inf. Theory.