Large deviations of the steady-state distribution of reflected processes with applications to queueing systems

AbstractWe consider a Skorohod map $$R$$ which takes paths in $$\mathbb{R}^n$$ to paths which stay in the positive orthant $$\mathbb{R}_{^ + }^n$$ . We let $$\mathcal{S}$$ be the domain of definition of $$R$$ . A convex and lower semi-continuous function $$\lambda {\text{:}}\mathbb{R}^n \to \left[ {0,\infty } \right]$$ and a set $$A \subset \mathbb{R}_{^ + }^n$$ are given. We are concerned with the calculation of the infimum of the value $$\int_0^t \lambda \left( {{\dot \omega }\left( {\mathcal{S}} \right)} \right){d}\mathcal{S}$$ for t ⩾ 0 and absolutely continuous $${\omega } \in \mathcal{S}$$ subject to the conditions $${\omega }\left( {0} \right){ = 0}$$ and $$R\left( \omega \right)\left( t \right) \in A$$ . We show that such minimization problems characterize large deviation asymptotics of tail probabilities of the steady-state distribution of certain reflected processes. We approximate the infimum by a sequence of finite-dimensional minimization problems. This approximation allows to formulate an algorithm for the calculation of the infimum and to derive analytical bounds for its value. Several applications are discussed including large deviations of generalized processor sharing and large deviations of heavily loaded queueing networks.

[1]  M. S. Bazaraa,et al.  Nonlinear Programming , 1979 .

[2]  A. Bernard,et al.  Regulations dÉterminates et stochastiques dans le premier “orthant” de RN , 1991 .

[3]  Claude Berge,et al.  Programming, games and transportation networks , 1966 .

[4]  P. Dupuis,et al.  Convex duality and the Skorokhod Problem. II , 1999 .

[5]  Abhay Parekh,et al.  A generalized processor sharing approach to flow control in integrated services networks: the single-node case , 1993, TNET.

[6]  P. Dupuis,et al.  On Lipschitz continuity of the solution mapping to the Skorokhod problem , 1991 .

[7]  J. Harrison,et al.  Reflected Brownian Motion in an Orthant: Numerical Methods for Steady-State Analysis , 1992 .

[8]  John N. Tsitsiklis,et al.  Large deviations analysis of the generalized processor sharing policy , 1999, Queueing Syst. Theory Appl..

[9]  J. Michael Harrison,et al.  Brownian models of multiclass queueing networks: Current status and open problems , 1993, Queueing Syst. Theory Appl..

[10]  Donald F. Towsley,et al.  Statistical Analysis of Generalized Processor Sharing Scheduling Discipline , 1995, IEEE J. Sel. Areas Commun..

[11]  Kurt Majewski Heavy traffic approximations of large deviations of feedforward queueing networks , 1998, Queueing Syst. Theory Appl..

[12]  J. Harrison,et al.  Reflected Brownian Motion on an Orthant , 1981 .

[13]  Amarjit Budhiraja,et al.  Simple Necessary and Sufficient Conditions for the Stability of Constrained Processes , 1999, SIAM J. Appl. Math..

[14]  J. M. Harrison,et al.  Brownian Models of Feedforward Queueing Networks: Quasireversibility and Product Form Solutions , 1992 .

[15]  Kavita Ramanan,et al.  A Skorokhod Problem formulation and large deviation analysis of a processor sharing model , 1998, Queueing Syst. Theory Appl..

[16]  Richard W. Cottle,et al.  Linear Complementarity Problem. , 1992 .

[17]  Cheng-Shang Chang,et al.  Sample path large deviations and intree networks , 1995, Queueing Syst. Theory Appl..

[18]  William P. Peterson,et al.  A Heavy Traffic Limit Theorem for Networks of Queues with Multiple Customer Types , 1991, Math. Oper. Res..

[19]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988 .

[20]  Ruth J. Williams Semimartingale reflecting Brownian motions in the orthant , 1995 .

[21]  Neil O'Connell Large deviations for queue lengths at a multi-buffered resource , 1998 .

[22]  Zhi-Li Zhang,et al.  Large deviations and the generalized processor sharing scheduling for a multiple-queue system , 1998, Queueing Syst. Theory Appl..

[23]  S. Nash,et al.  Linear and Nonlinear Programming , 1987 .

[24]  Amir Dembo,et al.  Large Deviations Techniques and Applications , 1998 .

[25]  John Wilson Model Solving in Mathematical Programming , 1993 .