A General Class of Greedily Solvable Linear Programs

A greedy algorithm solves a dual pair of linear programs where the primal variables are associated to the elements of a sublattice B of a finite product lattice, and the cost coefficients define a submodular function on B. This approach links and generalizes two well-known classes of greedily solvable linear programs. The primal problem generalizes the ordinary and multi-index transportation problems satisfying a Monge condition Hoffman 1963; Bein et al. 1995 to the case of forbidden cells where the nonforbidden cells form a sublattice. The dual problem generalizes to an arbitrary finite product lattice the linear optimization problem over submodular polyhedra Lovasz 1983; Fujishige and Tomizawa 1983, which stemmed from the work of Edmonds 1970 on polymatroids. Our model and results also encompass the dual pairs of linear programs and their greedy solutions defined by Lovasz 1983 for the special case of the Boolean algebra, and by Faigle and Kern 1996 for the case of so-called "rooted forests." We also discuss relationships between Monge properties and submodularity, and present a class of problems with submodular costs arising in production and logistics.

[1]  K. Haley The Multi-Index Problem , 1963 .

[2]  William P. Pierskalla,et al.  Letter to the Editor - The Multidimensional Assignment Problem , 1968, Oper. Res..

[3]  Jack Edmonds,et al.  Matroids and the greedy algorithm , 1971, Math. Program..

[4]  Alan J. Hoffman,et al.  A generalization of max flow—min cut , 1974, Math. Program..

[5]  J. Edmonds,et al.  A Min-Max Relation for Submodular Functions on Graphs , 1977 .

[6]  Donald M. Topkis,et al.  Minimizing a Submodular Function on a Lattice , 1978, Oper. Res..

[7]  F. Frances Yao,et al.  Efficient dynamic programming using quadrangle inequalities , 1980, STOC '80.

[8]  Alan Frieze,et al.  An Algorithm for Solving 3-Dimensional Assignment Problems with Application to Scheduling a Teaching Practice , 1981 .

[9]  László Lovász,et al.  Submodular functions and convexity , 1982, ISMP.

[10]  S. Fujishige,et al.  A NOTE ON SUBMODULAR FUNCTIONS ON DISTRIBUTIVE LATTICES , 1983 .

[11]  V. A. Yemelicher,et al.  Polytopes, Graphs and Optimisation , 1984 .

[12]  Frieda Granot,et al.  Substitutes, Complements and Ripples in Network Flows , 1985, Math. Oper. Res..

[13]  A. J. Hoffman,et al.  Surveys in combinatorics 1985: On greedy algorithms that succeed , 1985 .

[14]  E. Lawler,et al.  Well-solved special cases , 1985 .

[15]  Alok Aggarwal,et al.  Geometric applications of a matrix-searching algorithm , 1987, SCG '86.

[16]  András Frank,et al.  Generalized polymatroids and submodular flows , 1988, Math. Program..

[17]  A. D. Korsnikov Planar three-index transportation problems with dominating index , 1988, ZOR Methods Model. Oper. Res..

[18]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988, Wiley interscience series in discrete mathematics and optimization.

[19]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988 .

[20]  Kenneth C. Gilbert,et al.  MULTIDIMENSIONAL ASSIGNMENT PROBLEMS , 1988 .

[21]  A. F. Veinott Representation of general and polyhedral subsemilattices and sublattices of product spaces , 1989 .

[22]  Brenda L Dietrich Monge sequences, antimatroids, and the transportation problem with forbidden arcs , 1990 .

[23]  Ron Shamir,et al.  Characterization and algorithms for greedily solvable transportation problems , 1990, SODA '90.

[24]  Baruch Schieber,et al.  On-line dynamic programming with applications to the prediction of RNA secondary structure , 1991, SODA '90.

[25]  Alok Aggarwal,et al.  Applications of generalized matrix searching to geometric algorithms , 1990, Discret. Appl. Math..

[26]  James K. Park A Special Case of the n-Vertex Traveling-Salesman Problem that can be Solved in O(n) Time , 1991, Inf. Process. Lett..

[27]  Xiaolin Wu,et al.  Optimal Quantization by Matrix Searching , 1991, J. Algorithms.

[28]  René van Dal,et al.  Solvable Cases of the No-Wait Flow-Shop Scheduling Problem , 1991 .

[29]  藤重 悟 Submodular functions and optimization , 1991 .

[30]  Liqun Qi,et al.  On facets of the three-index assignment polytope , 1992, Australas. J Comb..

[31]  Maria M. Klawe,et al.  Superlinear Bounds for Matrix Searching Problems , 1992, J. Algorithms.

[32]  Ron Shamir,et al.  Monge and Feasibility Sequences in General Flow Problems , 1993, Discret. Appl. Math..

[33]  Arie Tamir,et al.  The least element property of center location on tree networks with applications to distance and precedence constrained problems , 1993, Math. Program..

[34]  Ron Shamir,et al.  Greedily Solvable Transportation Networks and Edge-Guided Vertex Elimination , 1993 .

[35]  Alok Aggarwal,et al.  Improved Algorithms for Economic Lot Size Problems , 1993, Oper. Res..

[36]  Frits C. R. Spieksma,et al.  Approximation Algorithms for Multi-Dimensional Assignment Problems with Decomposable Costs , 1994, Discret. Appl. Math..

[37]  Peter Brucker,et al.  A Monge Property for the D-dimensional Transportation Problem , 1995, Discret. Appl. Math..

[38]  Rainer E. Burkard,et al.  Perspectives of Monge Properties in Optimization , 1996, Discret. Appl. Math..

[39]  Ulrich Faigle,et al.  Submodular linear programs on forests , 1996, Math. Program..

[40]  Frits C. R. Spieksma,et al.  Approximation Algorithms for Multi-index Transportation Problems with Decomposable Costs , 1997, Discret. Appl. Math..

[41]  Shane S. Sturrock,et al.  Time Warps, String Edits, and Macromolecules – The Theory and Practice of Sequence Comparison . David Sankoff and Joseph Kruskal. ISBN 1-57586-217-4. Price £13.95 (US$22·95). , 2000 .

[42]  J. Humphreys Polytopes, Graphs and Optimisation , 2022 .