A look at cycles containing specified elements of a graph

This article is intended as a brief survey of problems and results dealing with cycles containing specified elements of a graph. It is hoped that this will help researchers in the area to identify problems and areas of concentration.

[1]  William McCuaig Cycles through edges in cyclically k-connected cubic graphs , 1992, Discret. Math..

[2]  E. Haacke Sequences , 2005 .

[3]  Takeshi Sugiyama,et al.  Hamiltonian cycles through a linear forest , 2004, SUT Journal of Mathematics.

[4]  Carsten Thomassen,et al.  Circuits through specified edges , 1982, Discret. Math..

[5]  M. Rosenfeld,et al.  Cyclability of r-regular r-connected graphs , 1984, Bulletin of the Australian Mathematical Society.

[6]  G. Meredith Regular n-valent n-connected nonHamiltonian non-n-edge-colorable graphs , 1973 .

[7]  Shi Ronghua,et al.  2-neighborhoods and Hamiltonian conditions , 1992 .

[8]  Michael S. Jacobson,et al.  Generalizing Pancyclic and k-Ordered Graphs , 2004, Graphs Comb..

[9]  Béla Bollobás,et al.  Cycles through specified vertices , 1993, Comb..

[10]  Jun Fujisawa,et al.  Forbidden subgraphs and the existence of paths and cycles passing through specified vertices , 2008, Discret. Math..

[11]  Roland Häggkvist,et al.  Circuits through prescribed vertices in k-connected k-regular graphs , 2002 .

[12]  Alexandr V. Kostochka,et al.  Degree conditions for k‐ordered hamiltonian graphs , 2003, J. Graph Theory.

[13]  Ken-ichi Kawarabayashi Cycles through a prescribed vertex set in N-connected graphs , 2004, J. Comb. Theory, Ser. B.

[14]  Vasek Chvátal,et al.  Tough graphs and hamiltonian circuits , 1973, Discret. Math..

[15]  Gábor N. Sárközy,et al.  On k-ordered Hamiltonian graphs , 1999 .

[16]  O. Ore Note on Hamilton Circuits , 1960 .

[17]  Toshinori Sakai Long Paths and Cycles Through Specified Vertices in k-Connected Graphs , 2001, Ars Comb..

[18]  A. K. Kelmans,et al.  On cycles through prescribed vertices in weakly separable graphs , 1983, Discret. Math..

[19]  J. G. Thompson,et al.  A Generalization of a Theorem of , 1973 .

[20]  Ken-ichi Kawarabayashi,et al.  Vertex-disjoint cycles containing specified edges in a bipartite graph , 2001, Australas. J Comb..

[21]  Yoshimi Egawa,et al.  Cycles and paths through specified vertices in k-connected graphs , 1991, J. Comb. Theory, Ser. B.

[22]  Geng-Hua Fan,et al.  New sufficient conditions for cycles in graphs , 1984, J. Comb. Theory, Ser. B.

[23]  Katsuhiro Ota,et al.  Cycles through prescribed vertices with large degree sum , 1995, Discret. Math..

[24]  Zsolt Tuza,et al.  On short cycles through prescribed vertices of a graph , 2004, Discret. Math..

[25]  Odile Favaron,et al.  Sequences, claws and cyclability of graphs , 1996 .

[26]  Hao Li,et al.  Cyclability of 3-connected graphs , 2000, J. Graph Theory.

[27]  Denise Amar,et al.  Cyclability and pancyclability in bipartite graphs , 2001, Discret. Math..

[29]  Paul Erdös,et al.  A note on Hamiltonian circuits , 1972, Discret. Math..

[30]  Michael S. Jacobson,et al.  Minimal Degree and (k, m)-Pancyclic Ordered Graphs , 2005, Graphs Comb..

[31]  Jianping Li,et al.  Cycles Containing Given Subsets in 1-Tough Graphs , 2001, Ars Comb..

[32]  Hong Wang,et al.  Vertex-Disjoint Cycles Containing Specified Edges , 2000, Graphs Comb..

[33]  D. A. Holton,et al.  Cycles Through Prescribed and Forbidden Point Sets , 1982 .

[34]  Jochen Harant,et al.  On cycles through specified vertices , 2006, Discret. Math..

[35]  G. Chartrand,et al.  Graphs & Digraphs , 1986 .

[36]  Alexandr V. Kostochka,et al.  An extremal problem for H‐linked graphs , 2005, J. Graph Theory.

[37]  Hudson V. Kronk Generalization of a theorem of Pósa , 1969 .

[38]  Hao Li,et al.  Hamiltonism, degree sum and neighborhood intersections , 1991, Discret. Math..

[39]  Haidong Wu,et al.  A Generalization of a Theorem of Dirac , 2001, J. Comb. Theory, Ser. B.

[40]  Michael S. Jacobson,et al.  On k-ordered graphs , 2000, J. Graph Theory.

[41]  Wayne Goddard Minimum Degree Conditions for Cycles Including Specified Sets of Vertices , 2004, Graphs Comb..

[42]  Odile Favaron,et al.  An Ore-type condition for pancyclability , 1999, Discret. Math..

[43]  Ladislav Stacho Cycles through specified vertices in 1-tough graphs , 2000, Ars Comb..

[44]  Dennis Saleh Zs , 2001 .

[45]  N. Tsikopoulos Cycles through k+2 vertices in k-connected graphs , 1984, Discret. Math..

[46]  K. Roberts,et al.  Thesis , 2002 .

[47]  Michael S. Jacobson,et al.  Onk-ordered graphs , 2000 .

[48]  Roland Häggkvist,et al.  Circuits through prescribed vertices ink-connectedk-regular graphs: CIRCUITS THROUGH PRESCRIBED VERTICES , 2002 .

[50]  D. R. Lick,et al.  The Theory and Applications of Graphs. , 1983 .

[51]  G. Dirac Some Theorems on Abstract Graphs , 1952 .

[52]  László Lovász,et al.  Cycles through specified vertices of a graph , 1981, Comb..

[53]  Yoshimi Egawa,et al.  Two-factors each component of which contains a specified vertex , 2003 .

[54]  G. Dirac In abstrakten Graphen vorhandene vollständige 4-Graphen und ihre Unterteilungen† , 1960 .

[55]  Akira Saito,et al.  Cycles intersecting a prescribed vertex set , 1991, J. Graph Theory.

[56]  Zdenek Ryjácek,et al.  Cycles through given vertices and closures , 2004, Discret. Math..

[57]  Michael S. Jacobson,et al.  Pancyclic graphs and linear forests , 2009, Discret. Math..

[58]  J. Bondy,et al.  Pancyclic graphs II , 1971 .

[59]  Douglas Bauer,et al.  A generalization of a result of Häggkvist and Nicoghossian , 1989, J. Comb. Theory, Ser. B.

[60]  Jochen Harant On paths and cycles through specified vertices , 2004, Discret. Math..

[61]  Hajime Matsumura Vertex-disjoint 4-cycles containing specified edges in a bipartite graph , 2005, Discret. Math..

[62]  Zhenqi Yang,et al.  On F-Hamiltonian graphs , 1999, Discret. Math..

[63]  Atsushi Kaneko,et al.  On a Hamiltonian Cycle in Which Specified Vertices Are Uniformly Distributed , 2001, J. Comb. Theory, Ser. B.

[64]  Jianping Li,et al.  Cycles through subsets with large degree sums , 1997, Discret. Math..

[65]  Tao Jiang,et al.  Vertex‐disjoint cycles containing prescribed vertices , 2003, J. Graph Theory.

[66]  M. Watkins,et al.  Cycles and Connectivity in Graphs , 1967, Canadian Journal of Mathematics.

[67]  Che Xiang-kai New Conditions for k-Ordered Hamiltonian Graphs , 2011 .

[68]  Michael S. Jacobson,et al.  Linear forests and ordered cycles , 2004, Discuss. Math. Graph Theory.

[69]  Kiyoshi Ando,et al.  Minimum length of cycles through specified vertices in graphs with wide-diameter at most d , 2001, Ars Comb..