A look at cycles containing specified elements of a graph
暂无分享,去创建一个
[1] William McCuaig. Cycles through edges in cyclically k-connected cubic graphs , 1992, Discret. Math..
[2] E. Haacke. Sequences , 2005 .
[3] Takeshi Sugiyama,et al. Hamiltonian cycles through a linear forest , 2004, SUT Journal of Mathematics.
[4] Carsten Thomassen,et al. Circuits through specified edges , 1982, Discret. Math..
[5] M. Rosenfeld,et al. Cyclability of r-regular r-connected graphs , 1984, Bulletin of the Australian Mathematical Society.
[6] G. Meredith. Regular n-valent n-connected nonHamiltonian non-n-edge-colorable graphs , 1973 .
[7] Shi Ronghua,et al. 2-neighborhoods and Hamiltonian conditions , 1992 .
[8] Michael S. Jacobson,et al. Generalizing Pancyclic and k-Ordered Graphs , 2004, Graphs Comb..
[9] Béla Bollobás,et al. Cycles through specified vertices , 1993, Comb..
[10] Jun Fujisawa,et al. Forbidden subgraphs and the existence of paths and cycles passing through specified vertices , 2008, Discret. Math..
[11] Roland Häggkvist,et al. Circuits through prescribed vertices in k-connected k-regular graphs , 2002 .
[12] Alexandr V. Kostochka,et al. Degree conditions for k‐ordered hamiltonian graphs , 2003, J. Graph Theory.
[13] Ken-ichi Kawarabayashi. Cycles through a prescribed vertex set in N-connected graphs , 2004, J. Comb. Theory, Ser. B.
[14] Vasek Chvátal,et al. Tough graphs and hamiltonian circuits , 1973, Discret. Math..
[15] Gábor N. Sárközy,et al. On k-ordered Hamiltonian graphs , 1999 .
[16] O. Ore. Note on Hamilton Circuits , 1960 .
[17] Toshinori Sakai. Long Paths and Cycles Through Specified Vertices in k-Connected Graphs , 2001, Ars Comb..
[18] A. K. Kelmans,et al. On cycles through prescribed vertices in weakly separable graphs , 1983, Discret. Math..
[19] J. G. Thompson,et al. A Generalization of a Theorem of , 1973 .
[20] Ken-ichi Kawarabayashi,et al. Vertex-disjoint cycles containing specified edges in a bipartite graph , 2001, Australas. J Comb..
[21] Yoshimi Egawa,et al. Cycles and paths through specified vertices in k-connected graphs , 1991, J. Comb. Theory, Ser. B.
[22] Geng-Hua Fan,et al. New sufficient conditions for cycles in graphs , 1984, J. Comb. Theory, Ser. B.
[23] Katsuhiro Ota,et al. Cycles through prescribed vertices with large degree sum , 1995, Discret. Math..
[24] Zsolt Tuza,et al. On short cycles through prescribed vertices of a graph , 2004, Discret. Math..
[25] Odile Favaron,et al. Sequences, claws and cyclability of graphs , 1996 .
[26] Hao Li,et al. Cyclability of 3-connected graphs , 2000, J. Graph Theory.
[27] Denise Amar,et al. Cyclability and pancyclability in bipartite graphs , 2001, Discret. Math..
[29] Paul Erdös,et al. A note on Hamiltonian circuits , 1972, Discret. Math..
[30] Michael S. Jacobson,et al. Minimal Degree and (k, m)-Pancyclic Ordered Graphs , 2005, Graphs Comb..
[31] Jianping Li,et al. Cycles Containing Given Subsets in 1-Tough Graphs , 2001, Ars Comb..
[32] Hong Wang,et al. Vertex-Disjoint Cycles Containing Specified Edges , 2000, Graphs Comb..
[33] D. A. Holton,et al. Cycles Through Prescribed and Forbidden Point Sets , 1982 .
[34] Jochen Harant,et al. On cycles through specified vertices , 2006, Discret. Math..
[35] G. Chartrand,et al. Graphs & Digraphs , 1986 .
[36] Alexandr V. Kostochka,et al. An extremal problem for H‐linked graphs , 2005, J. Graph Theory.
[37] Hudson V. Kronk. Generalization of a theorem of Pósa , 1969 .
[38] Hao Li,et al. Hamiltonism, degree sum and neighborhood intersections , 1991, Discret. Math..
[39] Haidong Wu,et al. A Generalization of a Theorem of Dirac , 2001, J. Comb. Theory, Ser. B.
[40] Michael S. Jacobson,et al. On k-ordered graphs , 2000, J. Graph Theory.
[41] Wayne Goddard. Minimum Degree Conditions for Cycles Including Specified Sets of Vertices , 2004, Graphs Comb..
[42] Odile Favaron,et al. An Ore-type condition for pancyclability , 1999, Discret. Math..
[43] Ladislav Stacho. Cycles through specified vertices in 1-tough graphs , 2000, Ars Comb..
[44] Dennis Saleh. Zs , 2001 .
[45] N. Tsikopoulos. Cycles through k+2 vertices in k-connected graphs , 1984, Discret. Math..
[46] K. Roberts,et al. Thesis , 2002 .
[47] Michael S. Jacobson,et al. Onk-ordered graphs , 2000 .
[48] Roland Häggkvist,et al. Circuits through prescribed vertices ink-connectedk-regular graphs: CIRCUITS THROUGH PRESCRIBED VERTICES , 2002 .
[50] D. R. Lick,et al. The Theory and Applications of Graphs. , 1983 .
[51] G. Dirac. Some Theorems on Abstract Graphs , 1952 .
[52] László Lovász,et al. Cycles through specified vertices of a graph , 1981, Comb..
[53] Yoshimi Egawa,et al. Two-factors each component of which contains a specified vertex , 2003 .
[54] G. Dirac. In abstrakten Graphen vorhandene vollständige 4-Graphen und ihre Unterteilungen† , 1960 .
[55] Akira Saito,et al. Cycles intersecting a prescribed vertex set , 1991, J. Graph Theory.
[56] Zdenek Ryjácek,et al. Cycles through given vertices and closures , 2004, Discret. Math..
[57] Michael S. Jacobson,et al. Pancyclic graphs and linear forests , 2009, Discret. Math..
[58] J. Bondy,et al. Pancyclic graphs II , 1971 .
[59] Douglas Bauer,et al. A generalization of a result of Häggkvist and Nicoghossian , 1989, J. Comb. Theory, Ser. B.
[60] Jochen Harant. On paths and cycles through specified vertices , 2004, Discret. Math..
[61] Hajime Matsumura. Vertex-disjoint 4-cycles containing specified edges in a bipartite graph , 2005, Discret. Math..
[62] Zhenqi Yang,et al. On F-Hamiltonian graphs , 1999, Discret. Math..
[63] Atsushi Kaneko,et al. On a Hamiltonian Cycle in Which Specified Vertices Are Uniformly Distributed , 2001, J. Comb. Theory, Ser. B.
[64] Jianping Li,et al. Cycles through subsets with large degree sums , 1997, Discret. Math..
[65] Tao Jiang,et al. Vertex‐disjoint cycles containing prescribed vertices , 2003, J. Graph Theory.
[66] M. Watkins,et al. Cycles and Connectivity in Graphs , 1967, Canadian Journal of Mathematics.
[67] Che Xiang-kai. New Conditions for k-Ordered Hamiltonian Graphs , 2011 .
[68] Michael S. Jacobson,et al. Linear forests and ordered cycles , 2004, Discuss. Math. Graph Theory.
[69] Kiyoshi Ando,et al. Minimum length of cycles through specified vertices in graphs with wide-diameter at most d , 2001, Ars Comb..