Formulation, construction and analysis of kinetic models of metabolism: A review of modelling frameworks.

Kinetic models are critical to predict the dynamic behaviour of metabolic networks. Mechanistic kinetic models for large networks remain uncommon due to the difficulty of fitting their parameters. Recent modelling frameworks promise new ways to overcome this obstacle while retaining predictive capabilities. In this review, we present an overview of the relevant mathematical frameworks for kinetic formulation, construction and analysis. Starting with kinetic formalisms, we next review statistical methods for parameter inference, as well as recent computational frameworks applied to the construction and analysis of kinetic models. Finally, we discuss opportunities and limitations hindering the development of larger kinetic reconstructions.

[1]  E. Klipp,et al.  Bringing metabolic networks to life: convenience rate law and thermodynamic constraints , 2006, Theoretical Biology and Medical Modelling.

[2]  M. Savageau Biochemical systems analysis. II. The steady-state solutions for an n-pool system using a power-law approximation. , 1969, Journal of theoretical biology.

[3]  James C Liao,et al.  Redox homeostasis phenotypes in RubisCO‐deficient Rhodobacter sphaeroides via ensemble modeling , 2011, Biotechnology progress.

[4]  Jennifer L. Reed,et al.  Mechanistic analysis of multi-omics datasets to generate kinetic parameters for constraint-based metabolic models , 2013, BMC Bioinformatics.

[5]  M. Bodenstein,et al.  Eine Theorie der photochemischen Reaktionsgeschwindigkeiten , 1913 .

[6]  K. van Dam,et al.  Linear relation between rate and thermodynamic force in enzyme-catalyzed reactions. , 1980, Biochimica et biophysica acta.

[7]  D. Koshland,et al.  Comparison of experimental binding data and theoretical models in proteins containing subunits. , 1966, Biochemistry.

[8]  M Beato,et al.  On Imposing Detailed Balance in Complex Reaction Mechanisms , 2006 .

[9]  Eberhard O. Voit,et al.  150 Years of the Mass Action Law , 2015, PLoS Comput. Biol..

[10]  Ralf Takors,et al.  Sensitivity analysis for the reduction of complex metabolism models , 2004 .

[11]  D. Sorensen Newton's method with a model trust region modification , 1982 .

[12]  R. Steuer,et al.  The stability and robustness of metabolic states: identifying stabilizing sites in metabolic networks , 2007, Molecular systems biology.

[13]  Ramon Gonzalez,et al.  Quantitative analysis of the fermentative metabolism of glycerol in Escherichia coli , 2012, Biotechnology and bioengineering.

[14]  J. Liao,et al.  Ensemble modeling of metabolic networks. , 2008, Biophysical journal.

[15]  A Kremling,et al.  Exploiting the bootstrap method for quantifying parameter confidence intervals in dynamical systems. , 2006, Metabolic engineering.

[16]  Eytan Ruppin,et al.  Integrating quantitative proteomics and metabolomics with a genome-scale metabolic network model , 2010, Bioinform..

[17]  Ernst Dieter Gilles,et al.  Thermodynamic Constraints in Kinetic Modeling: Thermodynamic‐Kinetic Modeling in Comparison to Other Approaches , 2008 .

[18]  H. Westerhoff,et al.  Monte-Carlo Modeling of the Central Carbon Metabolism of Lactococcus lactis: Insights into Metabolic Regulation , 2014, PloS one.

[19]  Claudio A. Gelmi,et al.  Improved calibration of a solid substrate fermentation model , 2011 .

[20]  B. Palsson,et al.  Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth , 2002, Nature.

[21]  E. Allgower,et al.  Introduction to Numerical Continuation Methods , 1987 .

[22]  J. Bailey,et al.  Effects of spatiotemporal variations on metabolic control: approximate analysis using (log)linear kinetic models. , 1997, Biotechnology and bioengineering.

[23]  Thorsten Dickhaus,et al.  Testing a Statistical Hypothesis , 2015 .

[24]  I. Chou,et al.  Recent developments in parameter estimation and structure identification of biochemical and genomic systems. , 2009, Mathematical biosciences.

[25]  A. Hill,et al.  The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves , 1910 .

[26]  A. Ninfa,et al.  Development of Genetic Circuitry Exhibiting Toggle Switch or Oscillatory Behavior in Escherichia coli , 2003, Cell.

[27]  Rafael S. Costa,et al.  KiMoSys: a web-based repository of experimental data for KInetic MOdels of biological SYStems , 2014, BMC Systems Biology.

[28]  Jacky L. Snoep,et al.  Web-based kinetic modelling using JWS Online , 2004, Bioinform..

[29]  G. Briggs,et al.  A Note on the Kinetics of Enzyme Action. , 1925, The Biochemical journal.

[30]  Robert Hooke,et al.  `` Direct Search'' Solution of Numerical and Statistical Problems , 1961, JACM.

[31]  A Sorribas,et al.  Validation and steady-state analysis of a power-law model of purine metabolism in man. , 1997, The Biochemical journal.

[32]  Christopher R. Myers,et al.  Universally Sloppy Parameter Sensitivities in Systems Biology Models , 2007, PLoS Comput. Biol..

[33]  William G. Bardsley,et al.  Does any enzyme follow the Michaelis—Menten equation? , 1977, Molecular and Cellular Biochemistry.

[34]  H. Westerhoff,et al.  Synthetic biology and regulatory networks: where metabolic systems biology meets control engineering , 2016, Journal of The Royal Society Interface.

[35]  Yangyang Zhao,et al.  BioModels: ten-year anniversary , 2014, Nucleic Acids Res..

[36]  Rui Alves,et al.  Systemic properties of ensembles of metabolic networks: application of graphical and statistical methods to simple unbranched pathways , 2000, Bioinform..

[37]  Kiyohiro Imai,et al.  Global Allostery Model of Hemoglobin , 2002, The Journal of Biological Chemistry.

[38]  I. M. Klotz,et al.  The application of the law of mass action to binding by proteins; interactions with calcium. , 1946, Archives of biochemistry.

[39]  Héctor Jorquera,et al.  HIPPO: An Iterative Reparametrization Method for Identification and Calibration of Dynamic Bioreactor Models of Complex Processes , 2014 .

[40]  E. Klipp,et al.  Biochemical networks with uncertain parameters. , 2005, Systems biology.

[41]  S. V. Popova,et al.  Generalization of the model by monod, wyman and changeux for the case of a reversible monosubstrate reaction , 1975 .

[42]  Keng C. Soh,et al.  Identification of metabolic engineering targets for the enhancement of 1,4-butanediol production in recombinant E. coli using large-scale kinetic models. , 2016, Metabolic engineering.

[43]  J H S Hofmeyr,et al.  Comparing the regulatory behaviour of two cooperative, reversible enzyme mechanisms. , 2006, Systems biology.

[44]  A. Neves,et al.  Is the glycolytic flux in Lactococcus lactis primarily controlled by the redox charge? Kinetics of NAD(+) and NADH pools determined in vivo by 13C NMR. , 2002, The Journal of biological chemistry.

[45]  C. Maranas,et al.  A genome-scale Escherichia coli kinetic metabolic model k-ecoli457 satisfying flux data for multiple mutant strains , 2016, Nature Communications.

[46]  Fabian J Theis,et al.  High-dimensional Bayesian parameter estimation: case study for a model of JAK2/STAT5 signaling. , 2013, Mathematical biosciences.

[47]  D. Broomhead,et al.  A model of yeast glycolysis based on a consistent kinetic characterisation of all its enzymes , 2013, FEBS letters.

[48]  Ali R. Zomorrodi,et al.  A kinetic model of Escherichia coli core metabolism satisfying multiple sets of mutant flux data. , 2014, Metabolic engineering.

[49]  Peter J. Halling,et al.  Standards for Reporting Enzyme Data: The STRENDA Consortium: What it aims to do and why it should be helpful , 2014 .

[50]  V. Hatzimanikatis,et al.  A method for analysis and design of metabolism using metabolomics data and kinetic models: Application on lipidomics using a novel kinetic model of sphingolipid metabolism. , 2016, Metabolic engineering.

[51]  Rolf Rannacher,et al.  Model Based Parameter Estimation: Theory and Applications , 2015 .

[52]  B. Palsson,et al.  Constraining the metabolic genotype–phenotype relationship using a phylogeny of in silico methods , 2012, Nature Reviews Microbiology.

[53]  N A W van Riel,et al.  Parameter uncertainty in biochemical models described by ordinary differential equations. , 2013, Mathematical biosciences.

[54]  Eva Balsa-Canto,et al.  Power-law models of signal transduction pathways. , 2007, Cellular signalling.

[55]  Edda Klipp,et al.  Automated Ensemble Modeling with modelMaGe: Analyzing Feedback Mechanisms in the Sho1 Branch of the HOG Pathway , 2011, PloS one.

[56]  Matthias Reuss,et al.  Optimal re-design of primary metabolism in Escherichia coli using linlog kinetics. , 2004, Metabolic engineering.

[57]  R. Jackson,et al.  General mass action kinetics , 1972 .

[58]  Marc Hafner,et al.  Efficient characterization of high-dimensional parameter spaces for systems biology , 2011, BMC Systems Biology.

[59]  F. Lewis,et al.  A unified approach to model selection using the likelihood ratio test , 2011 .

[60]  Joachim M. Buhmann,et al.  Near-optimal experimental design for model selection in systems biology , 2013, Bioinform..

[61]  Reinhart Heinrich,et al.  A Linear Steady-State Treatment of Enzymatic Chains Critique of the Crossover Theorem and a General Procedure to Identify Interaction Sites with an Effector , 1974 .

[62]  A. Cornish-Bowden Fundamentals of Enzyme Kinetics , 1979 .

[63]  J. Liao,et al.  Reducing the allowable kinetic space by constructing ensemble of dynamic models with the same steady-state flux. , 2011, Metabolic engineering.

[64]  James C Liao,et al.  Ensemble Modeling for Robustness Analysis in engineering non-native metabolic pathways. , 2014, Metabolic engineering.

[65]  J. Rabinowitz,et al.  Ultrasensitive regulation of anapleurosis via allosteric activation of PEP carboxylase , 2012, Nature chemical biology.

[66]  Sach Mukherjee,et al.  Network inference using informative priors , 2008, Proceedings of the National Academy of Sciences.

[67]  C. Maranas,et al.  Improving prediction fidelity of cellular metabolism with kinetic descriptions. , 2015, Current opinion in biotechnology.

[68]  J. Liao,et al.  Ensemble Modeling for Aromatic Production in Escherichia coli , 2009, PloS one.

[69]  Ursula Klingmüller,et al.  Tests for cycling in a signalling pathway , 2004 .

[70]  Bryan C. Daniels,et al.  Sloppiness, robustness, and evolvability in systems biology. , 2008, Current opinion in biotechnology.

[71]  U. Sauer,et al.  Systematic identification of allosteric protein-metabolite interactions that control enzyme activity in vivo , 2013, Nature Biotechnology.

[72]  Judith B. Zaugg,et al.  Bacterial adaptation through distributed sensing of metabolic fluxes , 2010, Molecular systems biology.

[73]  Jens Timmer,et al.  Profile likelihood in systems biology , 2013, The FEBS journal.

[74]  Katharina Nöh,et al.  Current state and challenges for dynamic metabolic modeling. , 2016, Current opinion in microbiology.

[75]  Dirk P. Kroese,et al.  Simulation and the Monte Carlo method , 1981, Wiley series in probability and mathematical statistics.

[76]  Neema Jamshidi,et al.  Mass action stoichiometric simulation models: incorporating kinetics and regulation into stoichiometric models. , 2010, Biophysical journal.

[77]  Maksat Ashyraliyev,et al.  Systems biology: parameter estimation for biochemical models , 2009, The FEBS journal.

[78]  W. Cleland,et al.  The kinetics of enzyme-catalyzed reactions with two or more substrates or products. I. Nomenclature and rate equations. 1963. , 1989, Biochimica et biophysica acta.

[79]  A. Wagner,et al.  Automatic Generation of Predictive Dynamic Models Reveals Nuclear Phosphorylation as the Key Msn2 Control Mechanism , 2013, Science Signaling.

[80]  Eberhard O. Voit,et al.  Simulation and validation of modelled sphingolipid metabolism in Saccharomyces cerevisiae , 2005, Nature.

[81]  A. Cornish-Bowden Understanding allosteric and cooperative interactions in enzymes , 2014, The FEBS journal.

[82]  J. Liao,et al.  Ensemble modeling of hepatic fatty acid metabolism with a synthetic glyoxylate shunt. , 2010, Biophysical journal.

[83]  R. Mahadevan,et al.  The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. , 2003, Metabolic engineering.

[84]  R. Tolman The Principle of Microscopic Reversibility. , 1925, Proceedings of the National Academy of Sciences of the United States of America.

[85]  G. Adair THE HEMOGLOBIN SYSTEM VI. THE OXYGEN DISSOCIATION CURVE OF HEMOGLOBIN , 1925 .

[86]  James A. Pennline,et al.  Accelerated Convergence in Newton's Method , 1996, SIAM Rev..

[87]  K. Mauch,et al.  Tendency modeling: a new approach to obtain simplified kinetic models of metabolism applied to Saccharomyces cerevisiae. , 2000, Metabolic engineering.

[88]  Jeffrey C. Lagarias,et al.  Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions , 1998, SIAM J. Optim..

[89]  Edward J. O'Brien,et al.  Literature mining supports a next-generation modeling approach to predict cellular byproduct secretion , 2016, bioRxiv.

[90]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[91]  B. Palsson,et al.  In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data , 2001, Nature Biotechnology.

[92]  E. Gilles,et al.  Thermodynamically feasible kinetic models of reaction networks. , 2007, Biophysical journal.

[93]  P. Verheijen,et al.  Parameter identification of in vivo kinetic models: Limitations and challenges , 2013, Biotechnology journal.

[94]  Thilo Gross,et al.  Structural kinetic modeling of metabolic networks , 2006, Proceedings of the National Academy of Sciences.

[95]  J. Arnold,et al.  An ensemble method for identifying regulatory circuits with special reference to the qa gene cluster of Neurospora crassa , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[96]  Keng C. Soh,et al.  Towards kinetic modeling of genome-scale metabolic networks without sacrificing stoichiometric, thermodynamic and physiological constraints. , 2013, Biotechnology journal.

[97]  Rudolf Wegscheider,et al.  Über simultane Gleichgewichte und die Beziehungen zwischen Thermodynamik und Reactionskinetik homogener Systeme , 1901 .

[98]  J. Stelling,et al.  Ensemble modeling for analysis of cell signaling dynamics , 2007, Nature Biotechnology.

[99]  Reuven Y. Rubinstein,et al.  Simulation and the Monte Carlo method , 1981, Wiley series in probability and mathematical statistics.

[100]  P. Mendes,et al.  Systematic Construction of Kinetic Models from Genome-Scale Metabolic Networks , 2013, PloS one.

[101]  Reinhart Heinrich,et al.  A linear steady-state treatment of enzymatic chains. General properties, control and effector strength. , 1974, European journal of biochemistry.

[102]  Barbara M. Bakker,et al.  Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry. , 2000, European journal of biochemistry.

[103]  Barbara M. Bakker,et al.  Measuring enzyme activities under standardized in vivo‐like conditions for systems biology , 2010, The FEBS journal.

[104]  Edda Klipp,et al.  Modular rate laws for enzymatic reactions: thermodynamics, elasticities and implementation , 2010, Bioinform..

[105]  Gaudenz Danuser,et al.  Linking data to models: data regression , 2006, Nature Reviews Molecular Cell Biology.

[106]  David R. Gilbert,et al.  Handling Uncertainty in Dynamic Models: The Pentose Phosphate Pathway in Trypanosoma brucei , 2013, PLoS Comput. Biol..

[107]  Matthew D. Jankowski,et al.  Group contribution method for thermodynamic analysis of complex metabolic networks. , 2008, Biophysical journal.

[108]  Jacob Roll,et al.  Systems biology: model based evaluation and comparison of potential explanations for given biological data , 2009, The FEBS journal.

[109]  S. Lee,et al.  Systems strategies for developing industrial microbial strains , 2015, Nature Biotechnology.

[110]  Jeremy L. Muhlich,et al.  Properties of cell death models calibrated and compared using Bayesian approaches , 2013, Molecular systems biology.

[111]  Costas D. Maranas,et al.  k-OptForce: Integrating Kinetics with Flux Balance Analysis for Strain Design , 2014, PLoS Comput. Biol..

[112]  A. Burgard,et al.  Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. , 2011, Nature chemical biology.

[113]  J. Heijnen Approximative kinetic formats used in metabolic network modeling , 2005, Biotechnology and bioengineering.

[114]  Joseph P. Romano,et al.  A Review of Bootstrap Confidence Intervals , 1988 .

[115]  Hans V. Westerhoff,et al.  Testing Biochemistry Revisited: How In Vivo Metabolism Can Be Understood from In Vitro Enzyme Kinetics , 2012, PLoS Comput. Biol..

[116]  John D. Storey,et al.  Systems-level analysis of mechanisms regulating yeast metabolic flux , 2016, Science.

[117]  Athel Cornish-Bowden,et al.  Understanding the regulation of aspartate metabolism using a model based on measured kinetic parameters , 2009, Molecular systems biology.

[118]  L. Pauling,et al.  The Oxygen Equilibrium of Hemoglobin and Its Structural Interpretation. , 1935, Proceedings of the National Academy of Sciences of the United States of America.

[119]  C. Chassagnole,et al.  Dynamic modeling of the central carbon metabolism of Escherichia coli. , 2002, Biotechnology and bioengineering.

[120]  Eberhard O. Voit,et al.  Computational Analysis of Biochemical Systems: A Practical Guide for Biochemists and Molecular Biologists , 2000 .

[121]  J. Bailey,et al.  Analysis and design of metabolic reaction networks via mixed‐integer linear optimization , 1996 .

[122]  V. Leskovac Comprehensive Enzyme Kinetics , 2003 .

[123]  Lars K. Nielsen,et al.  Construction of feasible and accurate kinetic models of metabolism: A Bayesian approach , 2016, Scientific Reports.

[124]  H. Rottenberg,et al.  THE THERMODYNAMIC DESCRIPTION OF ENZYME-CATALYZED REACTIONS , 1973 .

[125]  W. Cleland The kinetics of enzyme-catalyzed reactions with two or more substrates or products. I. Nomenclature and rate equations. , 1963, Biochimica et biophysica acta.

[126]  U. Sauer,et al.  Advancing metabolic models with kinetic information. , 2014, Current opinion in biotechnology.

[127]  B. Efron Nonparametric estimates of standard error: The jackknife, the bootstrap and other methods , 1981 .

[128]  H. Rottenberg,et al.  The thermodynamic description of enzyme-catalyzed reactions. The linear relation between the reaction rate and the affinity. , 1973, Biophysical journal.

[129]  Klotz Im,et al.  The application of the law of mass action to binding by proteins; interactions with calcium. , 1946 .

[130]  U. Sauer,et al.  Multidimensional Optimality of Microbial Metabolism , 2012, Science.

[131]  J. Heijnen,et al.  A new framework for the estimation of control parameters in metabolic pathways using lin-log kinetics. , 2004, European journal of biochemistry.

[132]  D. Fell,et al.  Modelling photosynthesis and its control. , 2000, Journal of experimental botany.

[133]  Daniel C. Zielinski,et al.  Personalized Whole-Cell Kinetic Models of Metabolism for Discovery in Genomics and Pharmacodynamics. , 2015, Cell systems.

[134]  Eberhard O Voit,et al.  Theoretical Biology and Medical Modelling , 2022 .

[135]  William R Cluett,et al.  Constructing kinetic models of metabolism at genome‐scales: A review , 2015, Biotechnology journal.

[136]  S V Popova,et al.  [Generalization of the Monod-Wyman-Changeux model for the case of multisubstrate reactions]. , 1976, Molekuliarnaia biologiia.

[137]  Zhen Zhang,et al.  Evaluation of rate law approximations in bottom-up kinetic models of metabolism , 2016, BMC Systems Biology.

[138]  Joachim Selbig,et al.  From structure to dynamics of metabolic pathways: application to the plant mitochondrial TCA cycle , 2007, Bioinform..

[139]  Fabian J. Theis,et al.  Uncertainty Analysis for Non-identifiable Dynamical Systems: Profile Likelihoods, Bootstrapping and More , 2014, CMSB.

[140]  Ulrich Eggers,et al.  Biochemical Engineering Fundamentals , 2016 .

[141]  J. Mazat,et al.  Tissue variation in the control of oxidative phosphorylation: implication for mitochondrial diseases. , 2000, The Biochemical journal.

[142]  R. Mahadevan,et al.  Ensemble Modeling of Cancer Metabolism , 2012, Front. Physio..

[143]  A. Beskos,et al.  Error Bounds and Normalising Constants for Sequential Monte Carlo Samplers in High Dimensions , 2014, Advances in Applied Probability.

[144]  Joachim Selbig,et al.  Refined elasticity sampling for Monte Carlo-based identification of stabilizing network patterns , 2015, Bioinform..

[145]  J. Heijnen,et al.  In vivo kinetics of primary metabolism in Saccharomyces cerevisiae studied through prolonged chemostat cultivation. , 2006, Metabolic engineering.

[146]  A. Burgard,et al.  Optknock: A bilevel programming framework for identifying gene knockout strategies for microbial strain optimization , 2003, Biotechnology and bioengineering.

[147]  Sandro Macchietto,et al.  Model-based design of experiments for parameter precision: State of the art , 2008 .

[148]  Igor Goryanin,et al.  Kinetic Model of phosphofructokinase-1 from Escherichia coli , 2008, J. Bioinform. Comput. Biol..

[149]  J. Keasling,et al.  Engineering Cellular Metabolism , 2016, Cell.

[150]  Athel Cornish-Bowden,et al.  One hundred years of Michaelis–Menten kinetics☆ , 2015 .

[151]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[152]  P. Pearce PRINCIPLES OF STATISTICAL MECHANICS , 1998 .

[153]  Lei Shi,et al.  SABIO-RK—database for biochemical reaction kinetics , 2011, Nucleic Acids Res..

[154]  I. Birol,et al.  Metabolic control analysis under uncertainty: framework development and case studies. , 2004, Biophysical journal.

[155]  Jacques Haiech,et al.  A general strategy to characterize calmodulin-calcium complexes involved in CaM-target recognition: DAPK and EGFR calmodulin binding domains interact with different calmodulin-calcium complexes. , 2011, Biochimica et biophysica acta.

[156]  Izhack Oref,et al.  Termolecular Collisions: Comparison between Analytical Expression and Trajectory Calculations† , 2004 .

[157]  O. Demin,et al.  Kinetic modelling of central carbon metabolism in Escherichia coli , 2012, The FEBS journal.

[158]  Minoru Kanehisa,et al.  KEGG as a reference resource for gene and protein annotation , 2015, Nucleic Acids Res..

[159]  T. Keleti Two rules of enzyme kinetics for reversible Michaelis‐Menten mechanisms , 1986, FEBS letters.

[160]  Ursula Klingmüller,et al.  Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood , 2009, Bioinform..

[161]  Lars K. Nielsen,et al.  ll-ACHRB: a scalable algorithm for sampling the feasible solution space of metabolic networks , 2016, Bioinform..

[162]  H. Westerhoff,et al.  A probabilistic approach to identify putative drug targets in biochemical networks , 2011, Journal of The Royal Society Interface.

[163]  Robert A. Alberty,et al.  The Relationship between Michaelis Constants, Maximum Velocities and the Equilibrium Constant for an Enzyme-catalyzed Reaction , 1953 .

[164]  B. Palsson,et al.  Formulating genome-scale kinetic models in the post-genome era , 2008, Molecular systems biology.

[165]  J. Nielsen,et al.  Metabolic Control Analysis of the Penicillin Biosynthetic Pathway in a High‐Yielding Strain of Penicillium chrysogenum , 1995, Biotechnology progress.

[166]  C. Walter The validity of using a quasi-steady state approximation for the reversible Michaelis-Menten mechanism of enzyme action. , 1974, Journal of theoretical biology.

[167]  J. H. Hofmeyr,et al.  The reversible Hill equation: how to incorporate cooperative enzymes into metabolic models , 1997, Comput. Appl. Biosci..

[168]  W. Michael Conklin,et al.  Monte Carlo Methods in Bayesian Computation , 2001, Technometrics.

[169]  H. Kacser,et al.  The control of flux. , 1995, Biochemical Society transactions.

[170]  Pedro A. Saa,et al.  A probabilistic framework for the exploration of enzymatic capabilities based on feasible kinetics and control analysis. , 2016, Biochimica et biophysica acta.

[171]  David Hinkley,et al.  Bootstrap Methods: Another Look at the Jackknife , 2008 .

[172]  C. R. Rao,et al.  Information and the Accuracy Attainable in the Estimation of Statistical Parameters , 1992 .

[173]  Riccardo Poli,et al.  New ideas in optimization , 1999 .

[174]  A. Barabasi,et al.  Global organization of metabolic fluxes in the bacterium Escherichia coli , 2004, Nature.

[175]  Po-Wei Chen,et al.  Kinetically accessible yield (KAY) for redirection of metabolism to produce exo-metabolites. , 2017, Metabolic engineering.

[176]  J. Liao,et al.  Metabolic ensemble modeling for strain engineers , 2012, Biotechnology journal.

[177]  V. Hatzimanikatis,et al.  Modeling of uncertainties in biochemical reactions , 2011, Biotechnology and bioengineering.

[178]  James C. Liao,et al.  Stability of Ensemble Models Predicts Productivity of Enzymatic Systems , 2016, PLoS Comput. Biol..

[179]  Ljubisa Miskovic,et al.  iSCHRUNK--In Silico Approach to Characterization and Reduction of Uncertainty in the Kinetic Models of Genome-scale Metabolic Networks. , 2016, Metabolic engineering.

[180]  V. Hatzimanikatis,et al.  Metabolic engineering under uncertainty--II: analysis of yeast metabolism. , 2006, Metabolic engineering.

[181]  Boglárka G.-Tóth,et al.  Introduction to Nonlinear and Global Optimization , 2010 .

[182]  Keng C. Soh,et al.  From network models to network responses: integration of thermodynamic and kinetic properties of yeast genome-scale metabolic networks. , 2012, FEMS yeast research.

[183]  Wolfgang Wiechert,et al.  Translating biochemical network models between different kinetic formats. , 2009, Metabolic engineering.

[184]  Michael A. Savageau,et al.  Introduction to S-systems and the underlying power-law formalism , 1988 .

[185]  M. Gutmann,et al.  Approximate Bayesian Computation , 2019, Annual Review of Statistics and Its Application.

[186]  Adrián López García de Lomana,et al.  Topological augmentation to infer hidden processes in biological systems , 2013, Bioinform..

[187]  J. Gibbs Elementary Principles in Statistical Mechanics , 1902 .

[188]  Ronan M. T. Fleming,et al.  Consistent Estimation of Gibbs Energy Using Component Contributions , 2013, PLoS Comput. Biol..

[189]  Rainer Breitling,et al.  Dynamic Modelling under Uncertainty: The Case of Trypanosoma brucei Energy Metabolism , 2012, PLoS Comput. Biol..

[190]  J. Heijnen,et al.  Dynamic simulation and metabolic re-design of a branched pathway using linlog kinetics. , 2003, Metabolic engineering.

[191]  H. Westerhoff,et al.  Thermodynamics and Control of Biological Free-Energy Transduction , 1987 .

[192]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[193]  Claudia Biermann,et al.  Mathematical Methods Of Statistics , 2016 .

[194]  H. Katzgraber Introduction to Monte Carlo Methods , 2009, 0905.1629.

[195]  J. Gerhart,et al.  The enzymology of control by feedback inhibition. , 1962, The Journal of biological chemistry.

[196]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[197]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[198]  Antje Chang,et al.  BRENDA in 2017: new perspectives and new tools in BRENDA , 2016, Nucleic Acids Res..

[199]  James C Liao,et al.  Ensemble modeling for strain development of L-lysine-producing Escherichia coli. , 2009, Metabolic engineering.

[200]  Michael A Savageau,et al.  Phenotypes and tolerances in the design space of biochemical systems , 2009, Proceedings of the National Academy of Sciences.

[201]  Eberhard O. Voit,et al.  Kinetic modeling using S-systems and lin-log approaches , 2007 .

[202]  J. Heijnen,et al.  Determination of elasticities, concentration and flux control coefficients from transient metabolite data using linlog kinetics. , 2005, Metabolic engineering.

[203]  Carmen G. Moles,et al.  Parameter estimation in biochemical pathways: a comparison of global optimization methods. , 2003, Genome research.

[204]  Marija Cvijovic,et al.  Kinetic models in industrial biotechnology - Improving cell factory performance. , 2014, Metabolic engineering.

[205]  Paul-Henry Cournède,et al.  Bayesian parameter estimation for the Wnt pathway: an infinite mixture models approach , 2016, Bioinform..

[206]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[207]  J. Changeux,et al.  ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL. , 1965, Journal of molecular biology.

[208]  Ljubisa Miskovic,et al.  Production of biofuels and biochemicals: in need of an ORACLE. , 2010, Trends in biotechnology.

[209]  Edda Klipp,et al.  Bringing metabolic networks to life: integration of kinetic, metabolic, and proteomic data , 2006, Theoretical Biology and Medical Modelling.

[210]  H. Kurata,et al.  Development of an accurate kinetic model for the central carbon metabolism of Escherichia coli , 2016, Microbial Cell Factories.

[211]  Jacky L. Snoep,et al.  Targeting pathogen metabolism without collateral damage to the host , 2017, Scientific Reports.

[212]  Joerg M. Buescher,et al.  Global Network Reorganization During Dynamic Adaptations of Bacillus subtilis Metabolism , 2012, Science.

[213]  E. Lehmann,et al.  Testing Statistical Hypothesis. , 1960 .

[214]  J. Changeux Allostery and the Monod-Wyman-Changeux model after 50 years. , 2012, Annual review of biophysics.

[215]  Hermann-Georg Holzhütter,et al.  Quantitative time-resolved analysis reveals intricate, differential regulation of standard- and immuno-proteasomes , 2015, eLife.

[216]  Tamás Turányi,et al.  Analysis of Kinetic Reaction Mechanisms , 2014 .

[217]  Lars K. Nielsen,et al.  A General Framework for Thermodynamically Consistent Parameterization and Efficient Sampling of Enzymatic Reactions , 2015, PLoS Comput. Biol..

[218]  J. Nielsen,et al.  Metabolic control analysis of biochemical pathways based on a thermokinetic description of reaction rates. , 1997, The Biochemical journal.

[219]  Stephen J. Ganocy,et al.  Bayesian Statistical Modelling , 2002, Technometrics.

[220]  Pei Yee Ho,et al.  Multiple High-Throughput Analyses Monitor the Response of E. coli to Perturbations , 2007, Science.