Gibbons-Hawking-York boundary terms and the generalized geometrical trinity of gravity

General relativity (GR) as described in terms of curvature by the Einstein-Hilbert action is dynamically equivalent to theories of gravity formulated in terms of spacetime torsion or non-metricity. This forms what is called the geometrical trinity of gravity. The theories corresponding to this trinity are, apart from GR, the teleparallel (TEGR) and symmetric teleparallel (STEGR) equivalent theories of general relativity, respectively, and their actions are equivalent to GR up to boundary terms $B$. We investigate how the Gibbons-Hawking-York (GHY) boundary term of GR changes under the transition to TEGR and STEGR within the framework of metric-affine gravity. We show that $B$ is the difference between the GHY term of GR and that of metric-affine gravity. Moreover, we show that the GHY term for both TEGR and STEGR must vanish for consistency of the variational problem. Furthermore, our approach allows to extend the equivalence between GR, TEGR and STEGR beyond the Einstein-Hilbert action to any action built out of the curvature two-form, thus establishing the generalized geometrical trinity of gravity. We argue that these results will be particularly useful in view of studying gauge/gravity duality for theories with torsion and non-metricity.

[1]  M. Hohmann,et al.  Homogeneous and isotropic cosmology in general teleparallel gravity , 2022, The European Physical Journal C.

[2]  R. Myers,et al.  Complexity equals anything II , 2022, Journal of High Energy Physics.

[3]  J. Erdmenger,et al.  Hall viscosity and hydrodynamic inverse Nernst effect in graphene , 2022, Physical Review B.

[4]  J. Erdmenger,et al.  Universal Gibbons-Hawking-York term for theories with curvature, torsion and non-metricity , 2022, SciPost Physics.

[5]  M. Hohmann Teleparallel gravity , 2022, 2207.06438.

[6]  M. Stephanov,et al.  Spin relaxation rate for heavy quarks in weakly coupled QCD plasma , 2022, Journal of High Energy Physics.

[7]  Sebastian Grieninger,et al.  Pseudo-spontaneous U(1) symmetry breaking in hydrodynamics and holography , 2021, Journal of High Energy Physics.

[8]  M. Hendry,et al.  Teleparallel gravity: from theory to cosmology , 2021, Reports on progress in physics. Physical Society.

[9]  E. Speranza,et al.  Convergence of hydrodynamics in rapidly spinning strongly coupled plasma , 2021, 2112.10781.

[10]  M. Hohmann Gauge-Invariant Post-Newtonian Perturbations in Symmetric Teleparallel Gravity , 2021, Astronomy reports (Print).

[11]  S. Capozziello,et al.  Modified Gravity and Cosmology: An Update by the CANTATA Network , 2021, 2105.12582.

[12]  Sebastian Grieninger,et al.  Chiral hydrodynamics in strong external magnetic fields , 2021, Journal of High Energy Physics.

[13]  C. Boehmer,et al.  Modified gravity: A unified approach , 2021, Physical Review D.

[14]  Ioannis Matthaiakakis Hydrodynamics in Solid State Systems and the AdS/CFT correspondence , 2021 .

[15]  T. Koivisto,et al.  Cosmological perturbations in modified teleparallel gravity models: boundary term extension , 2020, 2009.02168.

[16]  A. Gallegos,et al.  Holographic spin liquids and Lovelock Chern-Simons gravity , 2020, Journal of High Energy Physics.

[17]  R. Thomale,et al.  Turbulent hydrodynamics in strongly correlated Kagome metals , 2019, Nature Communications.

[18]  T. Koivisto,et al.  General teleparallel quadratic gravity , 2019, Physics Letters B.

[19]  R. Leigh,et al.  Weyl connections and their role in holography , 2019, Physical Review D.

[20]  L. Heisenberg,et al.  The Geometrical Trinity of Gravity , 2019, Universe.

[21]  J. Bardarson,et al.  Mixed Axial-Torsional Anomaly in Weyl Semimetals. , 2018, Physical review letters.

[22]  C. Tsagas,et al.  Raychaudhuri equation in spacetimes with torsion and nonmetricity , 2018, Physical Review D.

[23]  J. Erdmenger,et al.  Strongly coupled electron fluids in the Poiseuille regime , 2018, Physical Review B.

[24]  M. Saal,et al.  Nonmetricity formulation of general relativity and its scalar-tensor extension , 2018, Physical Review D.

[25]  M. Ammon,et al.  Quasinormal modes of charged magnetic black branes & chiral magnetic transport , 2017, 1701.05565.

[26]  P. Nguyen,et al.  Noether charge, black hole volume, and complexity , 2016, 1610.02038.

[27]  Rafael D. Sorkin,et al.  Gravitational action with null boundaries , 2016, 1609.00207.

[28]  Daniel A. Roberts,et al.  Holographic Complexity Equals Bulk Action? , 2016, Physical review letters.

[29]  J. Erdmenger,et al.  Gauge/Gravity Duality: Foundations and Applications , 2015 .

[30]  Fang-Fang Yuan,et al.  Generalized Hodge dual for torsion in teleparallel gravity , 2014, 1408.6412.

[31]  E. Saridakis,et al.  Teleparallel equivalent of Gauss-Bonnet gravity and its modifications , 2014, 1404.2249.

[32]  J. G. Pereira,et al.  Teleparallel Gravity: An Introduction , 2012 .

[33]  P. Kovtun Lectures on hydrodynamic fluctuations in relativistic theories , 2012, 1205.5040.

[34]  Richard Gunstone,et al.  The fluid/gravity correspondence , 2011, 1107.5780.

[35]  E. Kiritsis,et al.  Effective holographic theories for low-temperature condensed matter systems , 2010, 1005.4690.

[36]  N. Deruelle,et al.  Hamiltonian Formulation of f (Riemann) Theories of Gravity , 2009, 0908.0679.

[37]  M. Rangamani,et al.  Gravity and hydrodynamics: lectures on the fluid-gravity correspondence , 2009, 0905.4352.

[38]  J. G. Pereira,et al.  A Hodge dual for soldered bundles , 2008, 0811.2066.

[39]  V. Hubeny,et al.  Nonlinear fluid dynamics from gravity , 2007, 0712.2456.

[40]  Kostas Skenderis String Theory in a Nutshell , 2007, Classical and Quantum Gravity.

[41]  S. Sachdev,et al.  Quantum critical transport, duality, and M-theory , 2007, hep-th/0701036.

[42]  Melanie Becker,et al.  String theory and M-theory: A modern introduction , 2006 .

[43]  M. Adak The Symmetric teleparallel gravity , 2006, gr-qc/0611077.

[44]  J. L. Jaramillo,et al.  A 3+1 perspective on null hypersurfaces and isolated horizons , 2005, gr-qc/0503113.

[45]  D. Son,et al.  Viscosity in strongly interacting quantum field theories from black hole physics. , 2005, Physical review letters.

[46]  Kostas Skenderis Lecture notes on holographic renormalization , 2002, Classical and Quantum Gravity.

[47]  Kostas Skenderis,et al.  Holographic Renormalization , 2001, hep-th/0112119.

[48]  J. M. Nester,et al.  Symmetric teleparallel general relativity , 1998, gr-qc/9809049.

[49]  E. Witten Anti-de Sitter space and holography , 1998, hep-th/9802150.

[50]  A. Polyakov,et al.  Gauge Theory Correlators from Non-Critical String Theory , 1998, hep-th/9802109.

[51]  J. Maldacena The Large-N Limit of Superconformal Field Theories and Supergravity , 1997, hep-th/9711200.

[52]  J. Mccrea,et al.  Metric affine gauge theory of gravity: Field equations, Noether identities, world spinors, and breaking of dilation invariance , 1994, gr-qc/9402012.

[53]  A. Trautman Einstein-Cartan Theory , 2006, gr-qc/0606062.

[54]  D. Raine General relativity , 1980, Nature.

[55]  S. Hawking,et al.  Action Integrals and Partition Functions in Quantum Gravity , 1977 .

[56]  John Corcoran,et al.  String theory , 1974, Journal of Symbolic Logic.

[57]  George F. R. Ellis,et al.  The Large Scale Structure of Space-Time , 2023 .

[58]  R. Wagoner,et al.  Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity , 1973 .

[59]  J. W. York ROLE OF CONFORMAL THREE-GEOMETRY IN THE DYNAMICS OF GRAVITATION. , 1972 .

[60]  D. Sciama The Physical structure of general relativity , 1964 .

[61]  T. Kibble Lorentz Invariance and the Gravitational Field , 1961 .

[62]  E. Cartan Sur les variétés à connexion affine et la théorie de la relativité généralisée. (première partie) , 1923 .