Unbiasing time-dependent Variational Monte Carlo by projected quantum evolution

We analyze the accuracy and sample complexity of variational Monte Carlo approaches to simulate the dynamics of many-body quantum systems classically. By systematically studying the relevant stochastic estimators, we are able to: (i) prove that the most used scheme, the time-dependent Variational Monte Carlo (tVMC), is affected by a systematic statistical bias or exponential sample complexity when the wave function contains some (possibly approximate) zeros, an important case for fermionic systems and quantum information protocols; (ii) show that a different scheme based on the solution of an optimization problem at each time step is free from such problems; (iii) improve the sample complexity of this latter approach by several orders of magnitude with respect to previous proofs of concept. Finally, we apply our advancements to study the high-entanglement phase in a protocol of non-Clifford unitary dynamics with local random measurements in 2D, first benchmarking on small spin lattices and then extending to large systems.

[1]  Michael J. Hoffmann,et al.  Quantum information phases in space-time: measurement-induced entanglement and teleportation on a noisy quantum processor , 2023, 2303.04792.

[2]  Javier Robledo Moreno,et al.  Variational Benchmarks for Quantum Many-Body Problems , 2023, 2302.04919.

[3]  M. Lewenstein,et al.  Measurement-induced phase transitions in $(d+1)$-dimensional stabilizer circuits , 2022, 2210.11957.

[4]  F. Nori,et al.  Creating and controlling exceptional points of non-Hermitian Hamiltonians via homodyne Lindbladian invariance , 2022, Physical Review A.

[5]  G. Carleo,et al.  Variational solutions to fermion-to-qubit mappings in two spatial dimensions , 2022, Quantum.

[6]  Vojtěch Havlíček Amplitude Ratios and Neural Network Quantum States , 2022, Quantum.

[7]  G. Carleo,et al.  NetKet 3: Machine Learning Toolbox for Many-Body Quantum Systems , 2021, SciPost Physics Codebases.

[8]  M. Dalmonte,et al.  Entanglement transitions from stochastic resetting of non-Hermitian quasiparticles , 2021, Physical Review B.

[9]  F. Nori,et al.  Continuous dissipative phase transitions with or without symmetry breaking , 2021, New Journal of Physics.

[10]  F. Vicentini,et al.  mpi4jax: Zero-copy MPI communication of JAX arrays , 2021, J. Open Source Softw..

[11]  M. Dalmonte,et al.  Measurement-induced entanglement transitions in the quantum Ising chain: From infinite to zero clicks , 2021, Physical Review B.

[12]  Giuseppe Carleo,et al.  An efficient quantum algorithm for the time evolution of parameterized circuits , 2021, Quantum.

[13]  A. Pal,et al.  Measurement-induced criticality and entanglement clusters: A study of one-dimensional and two-dimensional Clifford circuits , 2020, Physical Review B.

[14]  M. Barkeshli,et al.  Topological Order and Criticality in (2+1)D Monitored Random Quantum Circuits. , 2020, Physical review letters.

[15]  Giuseppe Carleo,et al.  Classical variational simulation of the Quantum Approximate Optimization Algorithm , 2020, npj Quantum Information.

[16]  M. Heyl,et al.  Variational classical networks for dynamics in interacting quantum matter , 2020, Physical Review B.

[17]  Javier Robledo Moreno,et al.  Phases of two-dimensional spinless lattice fermions with first-quantized deep neural-network quantum states , 2020, ArXiv.

[18]  M. Dalmonte,et al.  Measurement-induced criticality in (2+1) -dimensional hybrid quantum circuits , 2020, 2007.02970.

[19]  J. Haegeman,et al.  Geometry of variational methods: dynamics of closed quantum systems , 2020, 2004.01015.

[20]  Christian B. Mendl,et al.  Real time evolution with neural-network quantum states , 2019, Quantum.

[21]  M. Heyl,et al.  Quantum Many-Body Dynamics in Two Dimensions with Artificial Neural Networks. , 2019, Physical review letters.

[22]  M. Kastoryano,et al.  Geometry of learning neural quantum states , 2019, 1910.11163.

[23]  G. Carleo,et al.  Fermionic neural-network states for ab-initio electronic structure , 2019, Nature Communications.

[24]  David Pfau,et al.  Ab-Initio Solution of the Many-Electron Schrödinger Equation with Deep Neural Networks , 2019, Physical Review Research.

[25]  J. Stokes,et al.  Quantum Natural Gradient , 2019, Quantum.

[26]  W. Zhu,et al.  Measurement-induced phase transition: A case study in the nonintegrable model by density-matrix renormalization group calculations , 2019, Physical Review Research.

[27]  Guglielmo Mazzola,et al.  NetKet: A machine learning toolkit for many-body quantum systems , 2019, SoftwareX.

[28]  Kenny Choo,et al.  Two-dimensional frustrated J1−J2 model studied with neural network quantum states , 2019, Physical Review B.

[29]  N. Regnault,et al.  Variational Neural-Network Ansatz for Steady States in Open Quantum Systems. , 2019, Physical review letters.

[30]  Alexandra Nagy,et al.  Variational Quantum Monte Carlo Method with a Neural-Network Ansatz for Open Quantum Systems. , 2019, Physical review letters.

[31]  Michael J. Hartmann,et al.  Neural-Network Approach to Dissipative Quantum Many-Body Dynamics. , 2019, Physical review letters.

[32]  Amnon Shashua,et al.  Deep autoregressive models for the efficient variational simulation of many-body quantum systems , 2019, Physical review letters.

[33]  Matthew P. A. Fisher,et al.  Measurement-driven entanglement transition in hybrid quantum circuits , 2019, Physical Review B.

[34]  Ying Li,et al.  Theory of variational quantum simulation , 2018, Quantum.

[35]  Brian Skinner,et al.  Measurement-Induced Phase Transitions in the Dynamics of Entanglement , 2018, Physical Review X.

[36]  Bryan K. Clark,et al.  Backflow Transformations via Neural Networks for Quantum Many-Body Wave Functions. , 2018, Physical review letters.

[37]  Andrew S. Darmawan,et al.  Restricted Boltzmann machine learning for solving strongly correlated quantum systems , 2017, 1709.06475.

[38]  G. Carleo,et al.  Unitary Dynamics of Strongly Interacting Bose Gases with the Time-Dependent Variational Monte Carlo Method in Continuous Space , 2016, 1612.06392.

[39]  Matthias Troyer,et al.  Solving the quantum many-body problem with artificial neural networks , 2016, Science.

[40]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[41]  F. Nori,et al.  Quantum Simulation , 2013, Quantum Atom Optics.

[42]  Geoffrey E. Hinton,et al.  On the importance of initialization and momentum in deep learning , 2013, ICML.

[43]  Roman Orus,et al.  A Practical Introduction to Tensor Networks: Matrix Product States and Projected Entangled Pair States , 2013, 1306.2164.

[44]  Michele Fabrizio,et al.  Localization and Glassy Dynamics Of Many-Body Quantum Systems , 2011, Scientific Reports.

[45]  Claus Kiefer,et al.  Quantum Measurement and Control , 2010 .

[46]  Isaac L. Chuang,et al.  Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .

[47]  C. Sire,et al.  Quantum critical scaling of fidelity susceptibility , 2009, 0912.2689.

[48]  Maarten Van den Nest,et al.  Simulating quantum computers with probabilistic methods , 2009, Quantum Inf. Comput..

[49]  D. Rocca,et al.  Weak binding between two aromatic rings: feeling the van der Waals attraction by quantum Monte Carlo methods. , 2007, The Journal of chemical physics.

[50]  F. Verstraete,et al.  Lieb-Robinson bounds and the generation of correlations and topological quantum order. , 2006, Physical review letters.

[51]  S. Sorella Wave function optimization in the variational Monte Carlo method , 2005, cond-mat/0502553.

[52]  Matthias Troyer,et al.  Computational complexity and fundamental limitations to fermionic quantum Monte Carlo simulations , 2004, Physical review letters.

[53]  Youjin Deng,et al.  Cluster Monte Carlo simulation of the transverse Ising model. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[54]  D. Gottesman The Heisenberg Representation of Quantum Computers , 1998, quant-ph/9807006.

[55]  Shun-ichi Amari,et al.  Natural Gradient Works Efficiently in Learning , 1998, Neural Computation.

[56]  H. Rieger,et al.  Application of a continuous time cluster algorithm to the two-dimensional random quantum Ising ferromagnet , 1998, cond-mat/9802104.

[57]  J. V. Leeuwen,et al.  CRITICAL BEHAVIOR OF THE TWO-DIMENSIONAL ISING MODEL IN A TRANSVERSE FIELD: A DENSITY-MATRIX RENORMALIZATION CALCULATION , 1997, cond-mat/9709103.

[58]  Page,et al.  Average entropy of a subsystem. , 1993, Physical review letters.

[59]  Klaus Mølmer,et al.  A Monte Carlo wave function method in quantum optics , 1993, Optical Society of America Annual Meeting.

[60]  White,et al.  Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.

[61]  M. Suzuki,et al.  General theory of fractal path integrals with applications to many‐body theories and statistical physics , 1991 .

[62]  Reuven Y. Rubinstein,et al.  Simulation and the Monte Carlo method , 1981, Wiley series in probability and mathematical statistics.

[63]  R. J. Elliott,et al.  Ising Model with a Transverse Field , 1970 .

[64]  F. Y. Wu,et al.  The Ground State of Liquid He4 , 1962 .

[65]  H. Trotter On the product of semi-groups of operators , 1959 .

[66]  E. Brändas Non-hermitian quantum mechanics , 2012 .

[67]  Matthias Troyer,et al.  Quantum Monte Carlo , 2004 .

[68]  R. Needs,et al.  Quantum Monte Carlo simulations of solids , 2001 .

[69]  A. D. McLachlan,et al.  A variational solution of the time-dependent Schrodinger equation , 1964 .