An accurate method for solving a class of fractional Sturm-Liouville eigenvalue problems

[1]  Fathi M. Allan,et al.  An efficient algorithm for solving higher-order fractional Sturm-Liouville eigenvalue problems , 2014, J. Comput. Phys..

[2]  M. Al-Refai,et al.  Solving Fractional Diffusion Equation via the Collocation Method Based on Fractional Legendre Functions , 2014 .

[3]  M. Syam,et al.  Tau-Path Following Method for Solving the Riccati Equation with Fractional Order , 2014 .

[4]  George E. Karniadakis,et al.  Fractional Sturm-Liouville eigen-problems: Theory and numerical approximation , 2013, J. Comput. Phys..

[5]  E. Bas Fundamental Spectral Theory of Fractional Singular Sturm-Liouville Operator , 2013 .

[6]  Agnieszka B. Malinowska,et al.  Variational Methods for the Fractional Sturm--Liouville Problem , 2013, 1304.6258.

[7]  Zhi Shi,et al.  Application of Haar wavelet method to eigenvalue problems of high order differential equations , 2012 .

[8]  Yuri Luchko,et al.  Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation , 2011, 1111.2961.

[9]  Qasem M. Al-Mdallal,et al.  On the numerical solution of fractional Sturm–Liouville problems , 2010, Int. J. Comput. Math..

[10]  Saeid Abbasbandy,et al.  Homotopy analysis method for multiple solutions of the fractional Sturm-Liouville problems , 2010, Numerical Algorithms.

[11]  Qasem M. Al-Mdallal,et al.  An efficient method for solving fractional Sturm–Liouville problems , 2009 .

[12]  M. Syam,et al.  An efficient technique for finding the eigenvalues of fourth-order Sturm-Liouville problems , 2009 .

[13]  Quan Yuan,et al.  An improvement for Chebyshev collocation method in solving certain Sturm-Liouville problems , 2008, Appl. Math. Comput..

[14]  Ibrahim Çelik,et al.  Approximate solution of periodic Sturm-Liouville problems with Chebyshev collocation method , 2005, Appl. Math. Comput..

[15]  Ibrahim Çelik,et al.  Approximate computation of eigenvalues with Chebyshev collocation method , 2005, Appl. Math. Comput..

[16]  M. Syam Finding all real zeros of polynomial systems using multi-resultant , 2004 .

[17]  Guo-Wei Wei,et al.  A note on the numerical solution of high-order differential equations , 2003 .

[18]  Guirong Liu,et al.  The generalized differential quadrature rule for fourth‐order differential equations , 2001 .

[19]  Marco Marletta,et al.  Numerical methods for higher order Sturm-Liouville problems , 2000 .

[20]  M. Syam,et al.  Collocation-continuation technique for solving nonlinear ordinary boundary value problems , 1999 .

[21]  M. Marletta,et al.  Oscillation Theory and Numerical Solution of Sixth Order Sturm--Liouville Problems , 1998 .

[22]  Marco Marletta,et al.  Algorithm 775: the code SLEUTH for solving fourth-order Sturm-Liouville problems , 1997, TOMS.

[23]  P.A.A. Laura,et al.  Vibrations of non-uniform rings studied by means of the differential quadrature method , 1995 .

[24]  Wesley H. Huang,et al.  The pseudospectral method for solving di8erential eigenvalue problems , 1994 .

[25]  Edward H. Twizell,et al.  Numerical methods for special nonlinear boundary-value problems of order 2 m , 1993 .

[26]  Donal O'Regan,et al.  Solvability of some fourth (and higher) order singular boundary value problems , 1991 .

[27]  Leon Greenberg,et al.  An oscillation method for fourth-order, self-adjoint, two-point boundary value problems with nonlinear eigenvalues , 1991 .

[28]  Edward H. Twizell,et al.  Finite-difference methods for twelfth-order boundary-value problems , 1991 .

[29]  C. P. Gupta,et al.  Existence and uniqueness results for the bending of an elastic beam equation at resonance , 1988 .

[30]  J. Dougall,et al.  The Product of Two Legendre Polynomials , 1953, Proceedings of the Glasgow Mathematical Association.

[31]  Sadegh Abbasi,et al.  Inverse Laplace transform method for multiple solutions of the fractional Sturm-Liouville problems , 2014 .

[32]  A. Neamaty,et al.  Haar Wavelet Operational Matrix of Fractional Order Integration and its Application for Eigenvalues of Fractional Sturm-Liouville Problem , 2012 .

[33]  D. Lesnic,et al.  An Efficient Method for Sixth-order Sturm-Liouville Problems , 2007 .

[34]  Ibrahim Çelik,et al.  Approximate calculation of eigenvalues with the method of weighted residuals-collocation method , 2005, Appl. Math. Comput..

[35]  G. Weia,et al.  A Note on the Numerical Solution of High-Order Differential Equations , 2003 .

[36]  Marco Marletta,et al.  Oscillation theory and numerical solution of fourth-order Sturm—Liouville problems , 1995 .