Complex Dyadic Multiresolution Analyses
暂无分享,去创建一个
[1] Bernard C. Picinbono,et al. Second-order complex random vectors and normal distributions , 1996, IEEE Trans. Signal Process..
[2] T. R. Downie,et al. The discrete multiple wavelet transform and thresholding methods , 1998, IEEE Trans. Signal Process..
[3] Irene A. Stegun,et al. Handbook of Mathematical Functions. , 1966 .
[4] S. Mallat. Multiresolution approximations and wavelet orthonormal bases of L^2(R) , 1989 .
[5] I. Johnstone,et al. Wavelet Shrinkage: Asymptopia? , 1995 .
[6] Ingrid Daubechies,et al. Ten Lectures on Wavelets , 1992 .
[7] I. Daubechies. Orthonormal bases of compactly supported wavelets , 1988 .
[8] Langis Gagnon,et al. Speckle noise reduction of airborne SAR images with symmetric Daubechies wavelets , 1996, Defense, Security, and Sensing.
[9] J.-M. Lina. Complex Daubechies Wavelets: Filters Design and Applications , 1998 .
[10] B. Silverman,et al. Wavelet thresholding via a Bayesian approach , 1998 .
[11] G. Battle. A block spin construction of ondelettes. Part I: Lemarié functions , 1987 .
[12] S. Mallat. A wavelet tour of signal processing , 1998 .
[13] J. Lina,et al. The Importance of the Phase of the Symmetric Daubechies Wavelets Representation of Signals , 1996 .
[14] R. DeVore,et al. Fast wavelet techniques for near-optimal image processing , 1992, MILCOM 92 Conference Record.
[15] Benjamin Belzer,et al. Complex, linear-phase filters for efficient image coding , 1995, IEEE Trans. Signal Process..
[16] J. Lina,et al. Complex Daubechies Wavelets , 1995 .
[17] Wayne Lawton,et al. Applications of complex valued wavelet transforms to subband decomposition , 1993, IEEE Trans. Signal Process..