Complex Dyadic Multiresolution Analyses

This chapter presents the construction and some properties of the symmetric Daubechies wavelets. This class of solutions is part of the set of complexvalued solutions of the Daubechies’ program: orthonormal bases of L2 built from compactly supported wavelets with maximum regularity. We review some algorithms that take explicit advantage of the presence of phase in the complex representation of signals by the symmetric Daubechies wavelets. Applications for two-dimensional (2-D) signals are discussed.

[1]  Bernard C. Picinbono,et al.  Second-order complex random vectors and normal distributions , 1996, IEEE Trans. Signal Process..

[2]  T. R. Downie,et al.  The discrete multiple wavelet transform and thresholding methods , 1998, IEEE Trans. Signal Process..

[3]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[4]  S. Mallat Multiresolution approximations and wavelet orthonormal bases of L^2(R) , 1989 .

[5]  I. Johnstone,et al.  Wavelet Shrinkage: Asymptopia? , 1995 .

[6]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[7]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[8]  Langis Gagnon,et al.  Speckle noise reduction of airborne SAR images with symmetric Daubechies wavelets , 1996, Defense, Security, and Sensing.

[9]  J.-M. Lina Complex Daubechies Wavelets: Filters Design and Applications , 1998 .

[10]  B. Silverman,et al.  Wavelet thresholding via a Bayesian approach , 1998 .

[11]  G. Battle A block spin construction of ondelettes. Part I: Lemarié functions , 1987 .

[12]  S. Mallat A wavelet tour of signal processing , 1998 .

[13]  J. Lina,et al.  The Importance of the Phase of the Symmetric Daubechies Wavelets Representation of Signals , 1996 .

[14]  R. DeVore,et al.  Fast wavelet techniques for near-optimal image processing , 1992, MILCOM 92 Conference Record.

[15]  Benjamin Belzer,et al.  Complex, linear-phase filters for efficient image coding , 1995, IEEE Trans. Signal Process..

[16]  J. Lina,et al.  Complex Daubechies Wavelets , 1995 .

[17]  Wayne Lawton,et al.  Applications of complex valued wavelet transforms to subband decomposition , 1993, IEEE Trans. Signal Process..