Adaptive Euler simulations of airfoil–vortex interaction†

A grid redistribution method is used together with an improved spatially third-order accurate Euler solver to improve the accuracy of direct Euler simulations of airfoil–vortex interaction. The presented numerical results of two airfoil–vortex interaction cases indicate that with combination of the two methods, the numerical diffusion of vorticity inherent in the direct Euler simulations is drastically reduced without increasing the number of grid points. With some extra works due to grid redistribution, the predicted vortex structure is well preserved after a long convection and much sharper acoustic wave front resulting from airfoil–vortex interaction is captured. Copyright © 2006 John Wiley & Sons, Ltd.

[1]  J. Baeder,et al.  Flowfield of a Lifting Rotor in Hover: A Navier-Stokes Simulation , 1992 .

[2]  Patrick M. Knupp,et al.  Jacobian-Weighted Elliptic Grid Generation , 1996, SIAM J. Sci. Comput..

[3]  Lei Tang,et al.  Uniformly Accurate Finite Difference Schemes for p-Refinement , 1998, SIAM J. Sci. Comput..

[4]  M. Vinokur,et al.  An analysis of finite-difference and finite-volume formulations of conservation laws , 1986 .

[5]  C. J. Hwang,et al.  Adaptive Finite Volume Upwind Approaches for Aeroacoustic Computations , 1997 .

[6]  H. Huynh,et al.  Accurate Monotonicity-Preserving Schemes with Runge-Kutta Time Stepping , 1997 .

[7]  J. Baeder,et al.  Aerodynamics of two-dimensional blade-vortex interaction , 1985 .

[8]  O. Kwon,et al.  Numerical simulation of two-dimensional blade-vortex interactions using unstructured adaptive meshes , 2002 .

[9]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[10]  Man Mohan Rai,et al.  Navier-Stokes Simulations of Blade-Vortex Interaction Using High-Order-Accurate Upwind Schemes , 1987 .

[11]  J. Baeder,et al.  A two-step grid redistribution method , 2003 .

[12]  P. Thomas,et al.  Geometric Conservation Law and Its Application to Flow Computations on Moving Grids , 1979 .

[13]  Lei Tang,et al.  Improving Godunov-type reconstructions for simulation of vortex-dominated flows , 2006, J. Comput. Phys..

[14]  John F. Dannenhoffer A comparison of adaptive‐grid redistribution and embedding for steady transonic flows , 1991 .

[15]  C. Tam,et al.  Dispersion-relation-preserving finite difference schemes for computational acoustics , 1993 .

[16]  Brian E. Thompson,et al.  Accuracy evaluation of unsteady CFD numerical schemes by vortex preservation , 1995 .

[17]  Soogab Lee,et al.  Head-on parallel blade-vortex interaction , 1994 .

[18]  John Steinhoff,et al.  Navier-Stokes computation of blade-vortex interaction using vorticity confinement , 1995 .

[19]  S. Lele Compact finite difference schemes with spectral-like resolution , 1992 .

[20]  Brian E. Wake,et al.  Investigation of high-order upwinded differencing for vortex convection , 1995 .

[21]  Lakshmi N. Sankar,et al.  An assessment of full potential and Euler solutions for self-generated rotor blade-vortex interactions , 1992 .