Wiener and Volterra analyses applied to the auditory system

[1]  J. Barrett The Use of Functionals in the Analysis of Non-linear Physical Systems† , 1963 .

[2]  Y. W. Lee,et al.  Measurement of the Wiener Kernels of a Non-linear System by Cross-correlation† , 1965 .

[3]  B. P. TH. VELTMAN Quantisierung, Abtastfrequenz und statistische Streuung bei Korrelationsmessungen , 1966 .

[4]  J. L. Goldstein Auditory nonlinearity. , 1967, The Journal of the Acoustical Society of America.

[5]  P Kuyper,et al.  Triggered correlation. , 1968, IEEE transactions on bio-medical engineering.

[6]  J. L. Goldstein,et al.  Neural Correlates of the Aural Combination Tone 2f1−f2 , 1968 .

[7]  Guido F. Smoorenburg,et al.  Combination Tones and Their Origin , 1972 .

[8]  Hisanao Ogura,et al.  Orthogonal functionals of the Poisson process , 1972, IEEE Trans. Inf. Theory.

[9]  D O Kim,et al.  A system of nonlinear differential equations modeling basilar-membrane motion. , 1973, The Journal of the Acoustical Society of America.

[10]  A R Moller Statistical evaluation of the dynamic properties of cochlear nucleus units using stimuli modulated with pseudorandom noise. , 1973, Brain research.

[11]  E. D. Boer,et al.  On the Principle of Specific Coding , 1973 .

[12]  A. S. French,et al.  Measuring the Wiener kernels of a non-linear system using the fast Fourier transform algorithm† , 1973 .

[13]  M. Sachs,et al.  Rate versus level functions for auditory-nerve fibers in cats: tone-burst stimuli. , 1974, The Journal of the Acoustical Society of America.

[14]  A R Moller Latency of unit responses in cochlear nucleus determined in two different ways. , 1975, Journal of neurophysiology.

[15]  A. Møller,et al.  Dynamic properties of the responses of single neurones in the cochlear nucleus of the rat. , 1976, The Journal of physiology.

[16]  A. Møller Dynamic properties of primary auditory fibers compared with cells in the cochlear nucleus. , 1976, Acta physiologica Scandinavica.

[17]  E. De Boer Cross-correlation function of a bandpass nonlinear network , 1976, Proceedings of the IEEE.

[18]  E. D. Boer Cross-correlation function of a bandpass nonlinear network , 1976 .

[19]  L. Stark,et al.  The kernel identification method (1910–1977)— review of theory, calculation, application, and interpretation , 1977 .

[20]  Frequency selectivity of the peripheral auditory analyzer studied using broad band noise. , 1978, Acta physiologica Scandinavica.

[21]  E. de Boer,et al.  On cochlear encoding: Potentialities and limitations of the reverse‐correlation technique , 1978 .

[22]  E. de Boer,et al.  On cochlear encoding: potentialities and limitations of the reverse-correlation technique. , 1978, The Journal of the Acoustical Society of America.

[23]  S. Billings,et al.  Theory of separable processes with applications to the identification of nonlinear systems , 1978 .

[24]  E. De Boer Polynomial correlation , 1979, Proceedings of the IEEE.

[25]  R L Smith,et al.  Adaptation, saturation, and physiological masking in single auditory-nerve fibers. , 1979, The Journal of the Acoustical Society of America.

[26]  B. Knight,et al.  Nonlinear analysis with an arbitrary stimulus ensemble , 1979 .

[27]  S. Narashima Reddy,et al.  Spectral Analysis of Auditory Evoked Potentials with Pseudorandom Noise Excitation , 1979, IEEE Transactions on Biomedical Engineering.

[28]  N. Kiang Processing of speech by the auditory nervous system. , 1980, The Journal of the Acoustical Society of America.

[29]  D H Johnson Applicability of white-noise nonlinear system analysis to the peripheral auditory system. , 1980, The Journal of the Acoustical Society of America.

[30]  R. Shapley,et al.  A method of nonlinear analysis in the frequency domain. , 1980, Biophysical journal.

[31]  D. Symmes,et al.  On the use of natural stimuli in neurophysiological studies of audition , 1981, Hearing Research.

[32]  A. Aertsen,et al.  The phonochrome: A coherent spectro-temporal representation of sound , 1981, Hearing Research.

[33]  U Eysholdt,et al.  Maximum length sequences -- a fast method for measuring brain-stem-evoked responses. , 1982, Audiology : official organ of the International Society of Audiology.

[34]  B. M. Johnstone,et al.  Measurement of basilar membrane motion in the guinea pig using the Mössbauer technique. , 1982, The Journal of the Acoustical Society of America.

[35]  Reverse correlation study of cochlear filtering in normal and pathological guinea pig ears , 1982, Hearing Research.

[36]  Leon O. Chua,et al.  Measuring Volterra kernels , 1983 .

[37]  J. J. Eggermont,et al.  Quantitative characterisation procedure for auditory neurons based on the spectro-temporal receptive field , 1983, Hearing Research.

[38]  Frequency selectivity of phase-locking of complex sounds in the auditory nerve of the rat , 1983, Hearing Research.

[39]  Stephen T. Neely,et al.  An active cochlear model showing sharp tuning and high sensitivity , 1983, Hearing Research.

[40]  D. Sinex,et al.  Comparison of click responses of primary auditory fibers with minimum-phase predictions. , 1983, The Journal of the Acoustical Society of America.

[41]  A. Aertsen,et al.  Prediction of the responses of auditory neurons in the midbrain of the grass frog based on the spectro-temporal receptive field , 1983, Hearing Research.

[42]  A M Aertsen,et al.  Reverse-correlation methods in auditory research , 1983, Quarterly Reviews of Biophysics.

[43]  E. van Heusden,et al.  Responses from AVCN units in the cat before and after inducement of an acute noise trauma , 1983, Hearing Research.

[44]  C D Geisler,et al.  Comparison of the responses of auditory nerve fibers to consonant-vowel syllables with predictions from linear models. , 1984, The Journal of the Acoustical Society of America.

[45]  Short-latency auditory responses obtained by cross correlation. , 1984, The Journal of the Acoustical Society of America.

[46]  C. D. Geisler,et al.  Artifacts in Wiener Kernels Estimated Using Gaussian White Noise , 1984, IEEE Transactions on Biomedical Engineering.

[47]  C. D. Geisler,et al.  Wiener kernel analysis of responses from anteroventral cochlear nucleus neurons , 1984, Hearing Research.

[48]  G Palm,et al.  Volterra representation and Wiener-like identification of nonlinear systems: scope and limitations , 1985, Quarterly Reviews of Biophysics.

[49]  J. Eggermont Peripheral auditory adaptation and fatigue: A model oriented review , 1985, Hearing Research.

[50]  Jos J. Eggermont,et al.  Single-unit characteristics in the auditory midbrain of the immobilized grassfrog , 1985, Hearing Research.

[51]  K. Naka,et al.  Nonlinear analysis: mathematical theory and biological applications. , 1986, Critical reviews in biomedical engineering.

[52]  Aage R. Møller SYSTEMS IDENTIFICATION USING PSEUDORANDOM NOISE APPLIED TO A SENSORINEURAL SYSTEM. , 1986 .

[53]  Jos J. Eggermont,et al.  Sensitivity of neurons in the auditory midbrain of the grassfrog to temporal characteristics of sound. II. Stimulation with amplitude modulated sound , 1986, Hearing Research.

[54]  Adrian Rees,et al.  Dynamic properties of the responses of single neurons in the inferior colliculus of the rat , 1986, Hearing Research.

[55]  Jos J. Eggermont,et al.  Sensitivity of neurons in the auditory midbrain of the grassfrog to temporal characteristics of sound. I. Stimulation with acoustic clicks , 1986, Hearing Research.

[56]  Aage R. Møller USE OF PSEUDORANDOM NOISE IN STUDIES OF THE AUDITORY SYSTEM. , 1987 .

[57]  A R Møller Auditory evoked potentials to continuous amplitude-modulated sounds: can they be described by linear models? , 1987, Electroencephalography and clinical neurophysiology.

[58]  I. V. van Stokkum Sensitivity of neurons in the dorsal medullary nucleus of the grassfrog to spectral and temporal characteristics of sound. , 1987, Hearing research.

[59]  Adrian Rees,et al.  Stimulus properties influencing the responses of inferior colliculus neurons to amplitude-modulated sounds , 1987, Hearing Research.

[60]  J. Eggermont,et al.  White noise analysis of nonlinear systems with application to the auditory system , 1988 .

[61]  Auditory responses to the envelopes of pseudorandom noise stimuli in humans , 1988, Hearing Research.

[62]  R. Dobie,et al.  Auditory responses to the envelopes of pseudorandom noise stimuli in humans , 1988, Hearing Research.

[63]  L. Carney,et al.  Temporal coding of resonances by low-frequency auditory nerve fibers: single-fiber responses and a population model. , 1988, Journal of neurophysiology.

[64]  Aage R. Møller Analysis of the Whole-Nerve Responses from the Exposed Auditory Nerve in Man to Pseudorandom Noise , 1989 .

[65]  N. Dyn,et al.  Prediction of linear and non-linear responses of MGB neurons by system identification methods. , 1989, Bulletin of mathematical biology.

[66]  A. Møller,et al.  Responses from the exposed human auditory nerve to pseudorandom noise , 1989, Hearing Research.

[67]  K E Hecox,et al.  Brain-stem auditory-evoked responses elicited by maximum length sequences: effect of simultaneous masking noise. , 1990, The Journal of the Acoustical Society of America.

[68]  J. Eggermont,et al.  Characterizing auditory neurons using the Wigner and Rihacek distributions: a comparison. , 1990, The Journal of the Acoustical Society of America.

[69]  K E Hecox,et al.  A comparison of maximum length and Legendre sequences for the derivation of brain-stem auditory-evoked responses at rapid rates of stimulation. , 1990, The Journal of the Acoustical Society of America.

[70]  V. Marmarelis,et al.  Wiener analysis of nonlinear feedback in sensory systems , 1990, [1990] Proceedings of the Twelfth Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[71]  Ben M. Clopton,et al.  A spectrotemporal analysis of DCN single unit responses to wideband noise in guinea pig , 1991, Hearing Research.

[72]  Ben M Clopton,et al.  Spectrotemporal receptive fields of neurons in cochlear nucleus of guinea pig , 1991, Hearing Research.

[73]  K. Hecox,et al.  Nonlinear system identification by m-pulse sequences: application to brainstem auditory evoked responses , 1991, IEEE Transactions on Biomedical Engineering.

[74]  Willem J. Melssen,et al.  Selectivity for temporal characteristics of sound and interaural time difference of auditory midbrain neurons in the grassfrog: A system theoretical approach , 1992, Hearing Research.

[75]  T. Yin,et al.  Responses to amplitude-modulated tones in the auditory nerve of the cat. , 1992, The Journal of the Acoustical Society of America.

[76]  John J. Rosowski,et al.  Middle-ear transmission: Acoustic versus ossicular coupling in cat and human , 1992, Hearing Research.

[77]  A. Vendrik,et al.  Neurons in the cochlear nucleus investigated with tone and noise stimuli , 1975, Experimental Brain Research.

[78]  A. S. French,et al.  Practical nonlinear system analysis by Wiener kernel estimation in the frequency domain , 1976, Biological Cybernetics.

[79]  N. Dyn,et al.  Identification of MGB cells by volterra kernels , 2004, Biological Cybernetics.

[80]  A. Aertsen,et al.  The Spectro-Temporal Receptive Field , 1981, Biological Cybernetics.

[81]  Representation of time-dependent correlation and recurrence time functions , 1986, Biological Cybernetics.

[82]  Y. Yeshurun,et al.  Identification of MGB cells by Volterra kernels , 2004, Biological Cybernetics.

[83]  H. I. Krausz,et al.  Identification of nonlinear systems using random impulse train inputs , 1975, Biological Cybernetics.

[84]  J. J. Eggermont,et al.  Analog modelling of cochlear adaptation , 1973, Kybernetik.

[85]  R. Eckhorn,et al.  Generation of Gaussian noise with improved quasi-white properties , 2004, Biological Cybernetics.

[86]  Wiener analysis of functionals of a Markov chain: Application to neural transformations of random signals , 1980, Biological Cybernetics.

[87]  C. Swerup On the choice of noise for the analysis of the peripheral auditory system , 2004, Biological Cybernetics.

[88]  A. Møller Use of pseudorandom noise in studies of frequency selectivity: The periphery of the auditory system , 1983, Biological Cybernetics.

[89]  Wiener analysis of nonlinear systems using Poisson-Charlier crosscorrelation , 1977, Biological Cybernetics.

[90]  F. Mammano,et al.  Modeling auditory system nonlinearities through Volterra series , 1990, Biological Cybernetics.

[91]  Hiroko M. Sakai,et al.  Generation and transformation of second-order nonlinearity in catfish retina , 2006, Annals of Biomedical Engineering.

[92]  A. Møller,et al.  Use of pseudorandom noise in studies of auditory evoked potentials , 2006, Annals of Biomedical Engineering.