Cell-geometry-dependent changes in plasma membrane order direct stem cell signalling and fate

[1]  M. Stevens,et al.  Preventing tissue fibrosis by local biomaterials interfacing of specific cryptic extracellular matrix information , 2017, Nature Communications.

[2]  Margaret A. Johns,et al.  Corrigendum: The OncoPPi network of cancer-focused protein–protein interactions to inform biological insights and therapeutic strategies , 2017, Nature Communications.

[3]  A. Gordon,et al.  Differentiating sepsis from non-infectious systemic inflammation based on microvesicle-bacteria aggregation. , 2015, Nanoscale.

[4]  M. Stevens,et al.  High resolution Raman spectroscopy mapping of stem cell micropatterns† , 2015, The Analyst.

[5]  P. Insel,et al.  Interaction of membrane/lipid rafts with the cytoskeleton: impact on signaling and function: membrane/lipid rafts, mediators of cytoskeletal arrangement and cell signaling. , 2014, Biochimica et biophysica acta.

[6]  N. Elvassore,et al.  A Mechanical Checkpoint Controls Multicellular Growth through YAP/TAZ Regulation by Actin-Processing Factors , 2013, Cell.

[7]  A. Kaminski,et al.  Modulating the Actin Cytoskeleton Affects Mechanically Induced Signal Transduction and Differentiation in Mesenchymal Stem Cells , 2013, PloS one.

[8]  Peter I. Miller,et al.  Does Presence of a Mid-Ocean Ridge Enhance Biomass and Biodiversity? , 2013, PloS one.

[9]  P. Schwille,et al.  Elucidating membrane structure and protein behavior using giant plasma membrane vesicles , 2012, Nature Protocols.

[10]  M. Stevens,et al.  Correlative Light-Ion Microscopy for biological applications. , 2012, Nanoscale.

[11]  Christopher S. Chen,et al.  Matrix rigidity regulates a switch between TGF-β1–induced apoptosis and epithelial–mesenchymal transition , 2012, Molecular biology of the cell.

[12]  P. Hawkins,et al.  PI3K signalling: the path to discovery and understanding , 2012, Nature Reviews Molecular Cell Biology.

[13]  G. Charras,et al.  Experimental validation of atomic force microscopy-based cell elasticity measurements , 2011, Nanotechnology.

[14]  Xin Zhou,et al.  PI3K/Akt signaling requires spatial compartmentalization in plasma membrane microdomains , 2011, Proceedings of the National Academy of Sciences.

[15]  A. DateAbhijit,et al.  新しい安定剤としての両親媒性脂質Gelucire 50/13を含む脂質ナノキャリア(GeluPearl): 製造及び特性測定と経口薬物送達のための評価 , 2011 .

[16]  P. Majumder,et al.  MK-2206, an Allosteric Akt Inhibitor, Enhances Antitumor Efficacy by Standard Chemotherapeutic Agents or Molecular Targeted Drugs In vitro and In vivo , 2010, Molecular Cancer Therapeutics.

[17]  R. Gniadecki,et al.  Inhibition of Akt signaling by exclusion from lipid rafts in normal and transformed epidermal keratinocytes. , 2010, The Journal of investigative dermatology.

[18]  Milan Mrksich,et al.  Geometric cues for directing the differentiation of mesenchymal stem cells , 2010, Proceedings of the National Academy of Sciences.

[19]  Kai Simons,et al.  Lipid Rafts As a Membrane-Organizing Principle , 2010, Science.

[20]  E. Place,et al.  Complexity in biomaterials for tissue engineering. , 2009, Nature materials.

[21]  Jin Zhang,et al.  Spatiotemporal analysis of differential Akt regulation in plasma membrane microdomains. , 2008, Molecular biology of the cell.

[22]  Hai-Tao He,et al.  Raft nanodomains contribute to Akt/PKB plasma membrane recruitment and activation. , 2008, Nature chemical biology.

[23]  A. Ho,et al.  Cholera toxin binds to lipid rafts but has a limited specificity for ganglioside GM1 , 2007, Immunology and cell biology.

[24]  Lewis C. Cantley,et al.  AKT/PKB Signaling: Navigating Downstream , 2007, Cell.

[25]  D. Wüstner Fluorescent sterols as tools in membrane biophysics and cell biology. , 2007, Chemistry and physics of lipids.

[26]  R. Parton,et al.  The multiple faces of caveolae , 2007, Nature Reviews Molecular Cell Biology.

[27]  P. Insel,et al.  Do caveolins regulate cells by actions outside of caveolae? , 2007, Trends in cell biology.

[28]  D. Fletcher,et al.  Actin polymerization serves as a membrane domain switch in model lipid bilayers. , 2006, Biophysical journal.

[29]  P. Insel,et al.  Microtubules and Actin Microfilaments Regulate Lipid Raft/Caveolae Localization of Adenylyl Cyclase Signaling Components* , 2006, Journal of Biological Chemistry.

[30]  K. Gaus,et al.  Integrin-mediated adhesion regulates membrane order , 2006, The Journal of cell biology.

[31]  H. Kamiguchi The region‐specific activities of lipid rafts during axon growth and guidance , 2006, Journal of neurochemistry.

[32]  Molly M Stevens,et al.  Exploring and engineering the cell surface interface. , 2011, Science.

[33]  Julian H. George,et al.  Exploring and Engineering the Cell Surface Interface , 2005, Science.

[34]  Christopher S. Chen,et al.  Simple approach to micropattern cells on common culture substrates by tuning substrate wettability. , 2004, Tissue engineering.

[35]  Christopher S. Chen,et al.  Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. , 2004, Developmental cell.

[36]  D. Schlaepfer,et al.  Localized Stabilization of Microtubules by Integrin- and FAK-Facilitated Rho Signaling , 2004, Science.

[37]  Kai Simons,et al.  Lipid rafts and signal transduction , 2000, Nature Reviews Molecular Cell Biology.

[38]  C. S. Chen,et al.  Geometric control of cell life and death. , 1997, Science.

[39]  P. Oh,et al.  Filipin-sensitive caveolae-mediated transport in endothelium: reduced transcytosis, scavenger endocytosis, and capillary permeability of select macromolecules , 1994, The Journal of cell biology.