Theoretical Aspects of Evolutionary Computing

I: Tutorials.- to Evolutionary Computing in Design Search and Optimisation.- Evolutionary Algorithms and Constraint Satisfaction: Definitions, Survey, Methodology, and Research Directions.- The Dynamical Systems Model of the Simple Genetic Algorithm.- Modelling Genetic Algorithm Dynamics.- Statistical Mechanics Theory of Genetic Algorithms.- Theory of Evolution Strategies - A Tutorial.- Evolutionary Algorithms: From Recombination to Search Distributions.- Properties of Fitness Functions and Search Landscapes.- II: Technical Papers.- A Solvable Model of a Hard Optimisation Problem.- Bimodal Performance Profile of Evolutionary Search and the Effects of Crossover.- Evolution Strategies in Noisy Environments - A Survey of Existing Work.- Cyclic Attractors and Quasispecies Adaptability.- Genetic Algorithms in Time-Dependent Environments.- Statistical Machine Learning and Combinatorial Optimization.- Multi-Parent Scanning Crossover and Genetic Drift.- Harmonic Recombination for Evolutionary Computation.- How to Detect all Maxima of a Function.- On Classifications of Fitness Functions.- Genetic Search on Highly Symmetric Solution Spaces: Preliminary Results.- Structure Optimization and Isomorphisms.- Detecting Spin-Flip Symmetry in Optimization Problems.- Asymptotic Results for Genetic Algorithms with Applications to Nonlinear Estimation.

[1]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[2]  A. Bray,et al.  Metastable states in spin glasses , 1980 .

[3]  M. Freidlin,et al.  Random Perturbations of Dynamical Systems , 1984 .

[4]  Editors , 1986, Brain Research Bulletin.

[5]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[6]  Steven Minton,et al.  Minimizing Conflicts: A Heuristic Repair Method for Constraint Satisfaction and Scheduling Problems , 1992, Artif. Intell..

[7]  Hector J. Levesque,et al.  Hard and Easy Distributions of SAT Problems , 1992, AAAI.

[8]  Melanie Mitchell,et al.  Relative Building-Block Fitness and the Building Block Hypothesis , 1992, FOGA.

[9]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[10]  Kalyanmoy Deb,et al.  Long Path Problems , 1994, PPSN.

[11]  David E. Goldberg,et al.  Genetic Algorithm Difficulty and the Modality of Fitness Landscapes , 1994, FOGA.

[12]  Barbara M. Smith,et al.  The Phase Transition and the Mushy Region in Constraint Satisfaction Problems , 1994, ECAI.

[13]  A. E. Eiben,et al.  Solving constraint satisfaction problems using genetic algorithms , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[14]  Rich Caruana,et al.  Removing the Genetics from the Standard Genetic Algorithm , 1995, ICML.

[15]  Tim Jones Evolutionary Algorithms, Fitness Landscapes and Search , 1995 .

[16]  C. Reeves The Crossover Landscape for the Onemax Problem , 1996 .

[17]  Paul A. Viola,et al.  MIMIC: Finding Optima by Estimating Probability Densities , 1996, NIPS.

[18]  Zbigniew Michalewicz,et al.  Evolutionary Algorithms for Constrained Parameter Optimization Problems , 1996, Evolutionary Computation.

[19]  María Cristina Riff,et al.  Using the knowledge of the constraints network to design an evolutionary algorithm that solves CSP , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[20]  A. E. Eiben,et al.  Adaptive Penalties for Evolutionary Graph Coloring , 1997, Artificial Evolution.

[21]  C. Graham,et al.  Stochastic particle approximations for generalized Boltzmann models and convergence estimates , 1997 .

[22]  Jano I. van Hemert,et al.  Graph Coloring with Adaptive Evolutionary Algorithms , 1998, J. Heuristics.

[23]  Brendan J. Frey,et al.  Graphical Models for Machine Learning and Digital Communication , 1998 .

[24]  James Bowen,et al.  Solving constraint satisfaction problems using hybrid evolutionary search , 1998, IEEE Trans. Evol. Comput..

[25]  J. Garnier Statistical Distribution of the Convergence Time for Longpath Problems , 1998 .

[26]  Ian P. Gent,et al.  Well out of reach: Why hard problems are hard , 1999 .

[27]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.