Nanoenergetic Materials for MEMS: A Review

New energetic materials (EMs) are the key to great advances in microscale energy-demanding systems as actuation part, igniter, propulsion unit, and power. Nanoscale EMs (nEMs) particularly offer the promise of much higher energy densities, faster rate of energy release, greater stability, and more security (sensitivity to unwanted initiation). nEMs could therefore give response to microenergetics challenges. This paper provides a comprehensive review of current research activities in nEMs for microenergetics application. While thermodynamic calculations of flame temperature and reaction enthalpies are tools to choose desirable EMs, they are not sufficient for the choice of good material for microscale application where thermal losses are very penalizing. A strategy to select nEM is therefore proposed based on an analysis of the material diffusivity and heat of reaction. Finally, after a description of the different nEMs synthesis approaches, some guidelines for future investigations are provided.

[1]  S. H. Fischer,et al.  Theoretical Energy Release of Thermites, Intermetallics, and Combustible Metals , 1998 .

[2]  T. P. Weihs,et al.  Deposition and characterization of a self-propagating CuOx/Al thermite reaction in a multilayer foil geometry , 2003 .

[3]  R. Simpson,et al.  Use of Epoxides in the Sol−Gel Synthesis of Porous Iron(III) Oxide Monoliths from Fe(III) Salts , 2001 .

[4]  Kenji Fukuda,et al.  Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina , 1995, Science.

[5]  M. Pantoya,et al.  Combustion Behavior of Highly Energetic Thermites: Nano versus Micron Composites , 2005 .

[6]  Danick Briand,et al.  Matrix of 10 × 10 addressed solid propellant microthrusters: Review of the technologies , 2006 .

[7]  Yoonsu Choi,et al.  Polymeric microcombustors for solid-phase conductive fuels , 2004, 17th IEEE International Conference on Micro Electro Mechanical Systems. Maastricht MEMS 2004 Technical Digest.

[8]  Toshiaki Tamamura,et al.  Highly ordered nanochannel-array architecture in anodic alumina , 1997 .

[9]  M. Zachariah,et al.  Size-resolved kinetic measurements of aluminum nanoparticle oxidation with single particle mass spectrometry. , 2005, The journal of physical chemistry. B.

[10]  M. E. Brown,et al.  Combustion of Binary and Ternary Silicon/Oxidant Pyrotechnic Systems, Part III: Ternary Systems , 1993 .

[11]  Lawrence W. Hrubesh,et al.  New sol–gel synthetic route to transition and main-group metal oxide aerogels using inorganic salt precursors , 2001 .

[12]  M. E. Brown,et al.  Fuel—Oxidant Particle Contact in Binary Pyrotechnic Reactions , 1998 .

[13]  Michelle L. Pantoya,et al.  Laser ignition of nanocomposite thermites , 2004 .

[14]  R. Simpson,et al.  A versatile sol–gel synthesis route to metal–silicon mixed oxide nanocomposites that contain metal oxides as the major phase , 2003 .

[15]  Keiichi,et al.  MEMS-Based Solid Propellant Rocket Array Thruster with Electrical Feedthroughs , 2003 .

[16]  L. Cheng-lu,et al.  Laser-Initiated Aluminothermic Reaction Applied to Preparing Mo-Si Film on Silicon Substrates , 1987 .

[17]  D. Briand,et al.  Downscaling of solid propellant pyrotechnical microsystems , 2003, TRANSDUCERS '03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No.03TH8664).

[18]  K. Pister,et al.  Thrust and electrical power from solid propellant microrockets. 2. Actuators , 2001, Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090).

[19]  A. M. Renlund,et al.  Microenergetic Materials - Microscale Energetic Material Processing and Testing , 2003 .

[20]  Z. A. Munir,et al.  Thermite reactions: their utilization in the synthesis and processing of materials , 1993, Journal of Materials Science.

[21]  J. A. Martin,et al.  Oxidation behavior of aluminum nanopowders , 1995 .

[22]  S. Bhattacharya,et al.  A Novel On-Chip Diagnostic Method to Measure Burn Rates of Energetic Materials , 2006 .

[23]  S. George,et al.  SnO2 atomic layer deposition on ZrO2 and Al nanoparticles: Pathway to enhanced thermite materials , 2005 .

[24]  U. Jansson,et al.  Atomic Layer Epitaxy of Tungsten Oxide Films Using Oxyfluorides as Metal Precursors , 1999 .

[25]  J. Schoonman,et al.  Nanomaterials for Heterogeneous Combustion , 2004 .

[26]  M. Manaa,et al.  Flash ignition and initiation of explosives-nanotubes mixture. , 2005, Journal of the American Chemical Society.

[27]  Jin-Woo Choi,et al.  A functional on-chip pressure generator using solid chemical propellant for disposable lab-on-a-chip. , 2003, Lab on a chip.

[28]  L. Durães,et al.  Radial Combustion Propagation in Iron(III) Oxide/Aluminum Thermite Mixtures , 2006 .

[29]  Michael J. Sailor,et al.  Explosive nanocrystalline porous silicon and its use in atomic emission spectroscopy , 2002 .

[30]  R. Speyer,et al.  Aluminothermic reaction path in the synthesis of a TiB_2−Al_2O_3 composite , 1997 .

[31]  Masayoshi Esashi,et al.  MEMS-Based Solid Propellant Rocket Array Thruster , 2003 .

[32]  M. Pantoya,et al.  Effect of nanocomposite synthesis on the combustion performance of a ternary thermite. , 2005, The journal of physical chemistry. B.

[33]  Pierre Temple-Boyer,et al.  Realization, characterization of micro pyrotechnic actuators and FEM modelling of the combustion ignition , 1998 .

[34]  Mark G. Allen,et al.  Solid-phase conductive fuels for chemical microactuators , 2004 .

[35]  X. Li,et al.  Metal-assisted chemical etching in HF Õ H 2 O 2 produces porous silicon , 2000 .

[36]  A. Singh Challenges " # , 2006 .

[37]  Blaine W. Asay,et al.  Combustion velocities and propagation mechanisms of metastable interstitial composites , 2005 .

[38]  M. Pantoya,et al.  Dependence of size and size distribution on reactivity of aluminum nanoparticles in reactions with oxygen and MoO3 , 2006 .

[39]  T. Troianello,et al.  Precision foil resistors used as electro-pyrotechnic initiators , 2001, 2001 Proceedings. 51st Electronic Components and Technology Conference (Cat. No.01CH37220).

[40]  Jin-Woo Choi,et al.  A functional on-chip pressure generator using solid chemical propellant for disposable lab-on-a-chip , 2003, The Sixteenth Annual International Conference on Micro Electro Mechanical Systems, 2003. MEMS-03 Kyoto. IEEE.

[41]  K Ziegahn,et al.  Silicon initiator, from the idea to functional tests , 2004 .

[42]  D. Scott Stewart,et al.  Miniaturization of Explosive Technology and Microdetonics , 2005 .

[43]  Carole Rossi,et al.  Design, fabrication and characterization of a MEMS safe pyrotechnical igniter integrating arming, disarming and sterilization functions , 2005 .

[44]  Anand Krishnan Prakash,et al.  Synthesis and Reactivity of a Super‐Reactive Metastable Intermolecular Composite Formulation of Al/KMnO4 , 2005 .

[45]  K. An,et al.  Atomic layer deposition of nickel oxide films using Ni(dmamp)2 and water , 2005 .

[46]  A. Bard,et al.  Chemiluminescence of Anodized and Etched Silicon: Evidence for a Luminescent Siloxene-Like Layer on Porous Silicon , 1992, Science.

[47]  R. Armstrong,et al.  Enhanced Propellant Combustion with Nanoparticles , 2003 .

[48]  Carole Rossi,et al.  Pyrotechnic actuator: a new generation of Si integrated actuator , 1999 .

[49]  Edgar Y. Choueiri,et al.  MEMS Mega-pixel Micro-thruster Arrays for Small Satellite Stationkeeping , 2000 .

[50]  M. Zachariah,et al.  Enhancing the Rate of Energy Release from NanoEnergetic Materials by Electrostatically Enhanced Assembly , 2004 .

[51]  L. Fried,et al.  Design and Synthesis of Energetic Materials1 , 2001 .

[52]  Tanemasa Asano,et al.  Design and testing of mega-bit microthruster arrays , 2002 .

[53]  H. Fjellvåg,et al.  Growth of LaCoO 3 thin films from -diketonate precursors , 1997 .

[54]  M. Mr,et al.  Flash Ignition and Initiation of Explosives-Nanotubes Mixture , 2005 .

[55]  K. Pister,et al.  Microrockets for Smart Dust , 2001 .

[56]  Y. Sakka,et al.  Nanoexplosion synthesis of multimetal oxide ceramic nanopowders. , 2005, Nano letters.

[57]  M. Zachariah,et al.  Tuning the reactivity of energetic nanoparticles by creation of a core-shell nanostructure. , 2005, Nano letters.

[58]  M. Pantoya,et al.  Combustion of Environmentally Altered Molybdenum Trioxide Nanocomposites , 2006 .

[59]  Y. Sakka,et al.  Nano-Blast Synthesis of Nano-size CeO2–Gd2O3 Powders , 2006 .

[60]  M. Zachariah,et al.  Aero-Sol-Gel Synthesis of Nanoporous Iron-Oxide Particles: A Potential Oxidizer for Nanoenergetic Materials , 2004 .

[61]  R. Simpson,et al.  Nanostructured energetic materials using sol-gel methodologies , 2001 .

[62]  J. Berg,et al.  Ignition studies of Al/Fe2O3 energetic nanocomposites , 2004 .

[63]  Simon S. Ang,et al.  A MEMS-based solid propellant microthruster with Au/Ti igniter , 2005 .

[64]  R. B. Cohen,et al.  Digital MicroPropulsion , 1999, Technical Digest. IEEE International MEMS 99 Conference. Twelfth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.99CH36291).

[65]  Timothy P. Weihs,et al.  Effect of intermixing on self-propagating exothermic reactions in Al/Ni nanolaminate foils , 2000 .

[66]  J. Zhi,et al.  Research on the Combustion Properties of Propellants with Low Content of Nano Metal Powders , 2006 .

[67]  Carole Rossi,et al.  Micropyrotechnics, a new technology for making energetic microsystems : review and prospective , 2005 .

[68]  V. Timoshenko,et al.  Strong explosive interaction of hydrogenated porous silicon with oxygen at cryogenic temperatures. , 2001, Physical review letters.

[69]  A.A. Norton,et al.  Pneumatic microactuator powered by the deflagration of sodium azide , 2006, Journal of Microelectromechanical Systems.

[70]  Denis Lagrange,et al.  Final characterizations of MEMS-based pyrotechnical microthrusters , 2005 .

[71]  G. V. Ivanov,et al.  'ACTIVATED' ALUMINUM AS A STORED ENERGY SOURCE FOR PROPELLANTS , 1997 .