Subretinal electronic chips allow blind patients to read letters and combine them to words

A light-sensitive, externally powered microchip was surgically implanted subretinally near the macular region of volunteers blind from hereditary retinal dystrophy. The implant contains an array of 1500 active microphotodiodes (‘chip’), each with its own amplifier and local stimulation electrode. At the implant's tip, another array of 16 wire-connected electrodes allows light-independent direct stimulation and testing of the neuron–electrode interface. Visual scenes are projected naturally through the eye's lens onto the chip under the transparent retina. The chip generates a corresponding pattern of 38 × 40 pixels, each releasing light-intensity-dependent electric stimulation pulses. Subsequently, three previously blind persons could locate bright objects on a dark table, two of whom could discern grating patterns. One of these patients was able to correctly describe and name objects like a fork or knife on a table, geometric patterns, different kinds of fruit and discern shades of grey with only 15 per cent contrast. Without a training period, the regained visual functions enabled him to localize and approach persons in a room freely and to read large letters as complete words after several years of blindness. These results demonstrate for the first time that subretinal micro-electrode arrays with 1500 photodiodes can create detailed meaningful visual perception in previously blind individuals.

[1]  Angélica Pérez Fornos,et al.  Simulation of artificial vision: IV. Visual information required to achieve simple pointing and manipulation tasks , 2008, Vision Research.

[2]  J. Weiland,et al.  Visual performance using a retinal prosthesis in three subjects with retinitis pigmentosa. , 2007, American journal of ophthalmology.

[3]  W. Mokwa,et al.  First results of a study on a completely implanted retinal prosthesis in blind humans , 2008, 2008 IEEE Sensors.

[4]  S. J. Kim,et al.  A Suprachoroidal Electrical Retinal Stimulator Design for Long-Term Animal Experiments and In Vivo Assessment of Its Feasibility and Biocompatibility in Rabbits , 2008, Journal of biomedicine & biotechnology.

[5]  Albrecht Rothermel,et al.  A CMOS Chip With Active Pixel Array and Specific Test Features for Subretinal Implantation , 2009, IEEE Journal of Solid-State Circuits.

[6]  Daniel Palanker,et al.  Design of a high-resolution optoelectronic retinal prosthesis , 2005, Journal of neural engineering.

[7]  E. Zrenner,et al.  Long-term survival of retinal cell cultures on retinal implant materials , 1999, Vision Research.

[8]  Michael Bach,et al.  Basic quantitative assessment of visual performance in patients with very low vision. , 2010, Investigative ophthalmology & visual science.

[9]  E. Aulhorn,et al.  [Fixation width and fixation frequency of the contours presented in reading]. , 1953, Pflugers Archiv fur die gesamte Physiologie des Menschen und der Tiere.

[10]  M. S. Humayun,et al.  Preliminary Results from Argus II Feasibility Study: A 60 Electrode Epiretinal Prosthesis , 2009 .

[11]  Alfred Stett,et al.  Neuroprotective effect of transretinal electrical stimulation on neurons in the inner nuclear layer of the degenerated retina , 2009, Brain Research Bulletin.

[12]  J. Sommerhalder,et al.  Dynamics of Visual Perception Upon Electrical Stimulation of the Retina , 2010 .

[13]  A. Stett,et al.  Retinal charge sensitivity and spatial discrimination obtainable by subretinal implants: key lessons learned from isolated chicken retina , 2007, Journal of neural engineering.

[14]  E. Zrenner Will Retinal Implants Restore Vision ? , 2002 .

[15]  R. Klein,et al.  Causes and prevalence of visual impairment among adults in the United States. , 2004, Archives of ophthalmology.

[16]  Robert J Greenberg,et al.  Spatiotemporal interactions in retinal prosthesis subjects. , 2010, Investigative ophthalmology & visual science.

[17]  Michael Bach,et al.  Visual acuities "hand motion" and "counting fingers" can be quantified with the freiburg visual acuity test. , 2006, Investigative ophthalmology & visual science.

[18]  Michael Bach,et al.  Testing Visual Functions in Patients with Visual Prostheses , 2007 .

[19]  R. Hornig,et al.  Visual Perception After Long-Term Implantation of a Retinal Implant , 2008 .

[20]  S. Kelly,et al.  Perceptual efficacy of electrical stimulation of human retina with a microelectrode array during short-term surgical trials. , 2003, Investigative ophthalmology & visual science.

[21]  D Besch,et al.  Extraocular surgery for implantation of an active subretinal visual prosthesis with external connections: feasibility and outcome in seven patients , 2008, British Journal of Ophthalmology.

[22]  Thomas Schanze,et al.  Transscleral implantation and neurophysiological testing of subretinal polyimide film electrodes in the domestic pig in visual prosthesis development , 2005, Journal of neural engineering.

[23]  Gislin Dagnelie,et al.  Patients Blinded by Outer Retinal Dystrophies Are Able to Identify Letters Using the Argus TM II Retinal Prosthesis System , 2010 .

[24]  Thomas Laube,et al.  A method and technical equipment for an acute human trial to evaluate retinal implant technology , 2005, Journal of neural engineering.

[25]  U. Eysel,et al.  Cortical activation via an implanted wireless retinal prosthesis. , 2005, Investigative ophthalmology & visual science.

[26]  E. Aulhorn,et al.  Über Fixationsbreite und Fixationsfrequenz beim Lesen gerichteter Konturen , 2004, Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere.

[27]  E. M. Klier,et al.  Spatial updating and the maintenance of visual constancy , 2008, Neuroscience.

[28]  R. Pritchard Stabilized images on the retina. , 1961, Scientific American.

[29]  E. Zrenner,et al.  Electrical multisite stimulation of the isolated chicken retina , 2000, Vision Research.

[30]  Gislin Dagnelie,et al.  Understanding the origin of visual percepts elicited by electrical stimulation of the human retina , 1999, Graefe's Archive for Clinical and Experimental Ophthalmology.

[31]  B. Jones,et al.  Retinal remodeling during retinal degeneration. , 2005, Experimental eye research.

[32]  Y. Tano,et al.  Evaluation of phosphenes elicited by extraocular stimulation in normals and by suprachoroidal-transretinal stimulation in patients with retinitis pigmentosa , 2007, Graefe's Archive for Clinical and Experimental Ophthalmology.

[33]  S. Cogan,et al.  Retinal prostheses: current challenges and future outlook , 2007, Journal of biomaterials science. Polymer edition.

[34]  H. Gerding,et al.  Experimental implantation of epiretinal retina implants (EPI-RET) with an IOL-type receiver unit , 2007, Journal of neural engineering.

[35]  Paul J DeMarco,et al.  Stimulation via a subretinally placed prosthetic elicits central activity and induces a trophic effect on visual responses. , 2007, Investigative ophthalmology & visual science.

[36]  R. Jensen,et al.  Responses of ganglion cells to repetitive electrical stimulation of the retina , 2007, Journal of neural engineering.

[37]  A. Y. Chow,et al.  The artificial silicon retina microchip for the treatment of vision loss from retinitis pigmentosa. , 2004, Archives of ophthalmology.

[38]  Uwe Klose,et al.  Preoperative 3D Planning of Implantation of a Subretinal Prosthesis Using MRI Data , 2008 .

[39]  Thomas Schanze,et al.  Visual resolution with retinal implants estimated from recordings in cat visual cortex , 2006, Vision Research.

[40]  N H Lovell,et al.  A CMOS retinal neurostimulator capable of focussed, simultaneous stimulation , 2009, Journal of neural engineering.

[41]  Wilfried Mokwa,et al.  The EPIRET3 Wireless Intraocular Retina Implant System: Design of the EPIRET3 Prospective Clinical Trial and Overview , 2008 .