A Symmetry-Based Decomposition Approach to Eigenvalue Problems

In this paper, we propose a decomposition approach to differential eigenvalue problems with Abelian or non-Abelian symmetries. In the approach, we divide the original differential problem into eigenvalue subproblems which require less eigenpairs and can be solved independently. Our approach can be seamlessly incorporated with grid-based discretizations such as finite difference, finite element, or finite volume methods. We place the approach into a two-level parallelization setting, which saves the CPU time remarkably. For illustration and application, we implement our approach with finite elements and carry out electronic structure calculations of some symmetric cluster systems, in which we solve thousands of eigenpairs with millions of degrees of freedom and demonstrate the effectiveness of the approach.

[1]  Y. Saad,et al.  PARSEC – the pseudopotential algorithm for real‐space electronic structure calculations: recent advances and novel applications to nano‐structures , 2006 .

[2]  Gong,et al.  FINITE ELEMENT APPROXIMATIONS FOR SCHR ¨ ODINGER EQUATIONS WITH APPLICATIONS TO ELECTRONIC STRUCTURE COMPUTATIONS * , 2008 .

[3]  E. Wigner,et al.  Book Reviews: Group Theory. And Its Application to the Quantum Mechanics of Atomic Spectra , 1959 .

[4]  M. Bampton,et al.  Coupling of substructures for dynamic analyses. , 1968 .

[5]  Percy Deift,et al.  Review: Shmuel Agmon, Lectures on exponential decay of solutions of second-order elliptic equations: bounds on eigenfunctions of $N$-body Schrödinger operators , 1985 .

[6]  J. Pask,et al.  Finite element methods in ab initio electronic structure calculations , 2005 .

[7]  Alphose Zingoni,et al.  Group‐theoretic exploitations of symmetry in computational solid and structural mechanics , 2009 .

[8]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[9]  M. Tsukada,et al.  Electronic-structure calculations based on the finite-element method. , 1995, Physical review. B, Condensed matter.

[10]  John M. Neuberger,et al.  Computing eigenfunctions on the Koch Snowflake: a new grid and symmetry , 2006, 1010.0775.

[11]  Philip A. Sterne,et al.  Calculation of positron observables using a finite-element-based approach , 1998 .

[12]  R. Martin,et al.  Electronic Structure: Basic Theory and Practical Methods , 2004 .

[13]  Jun Fang,et al.  A Kohn-Sham equation solver based on hexahedral finite elements , 2012, J. Comput. Phys..

[14]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[15]  Bodo Erdmann,et al.  A self-adaptive multilevel finite element method for the stationary Schrödinger equation in three space dimensions , 1994 .

[16]  T. Torsti,et al.  Three real‐space discretization techniques in electronic structure calculations , 2006 .

[17]  A. Bossavit,et al.  Symmetry, groups and boundary value problems. A progressive introduction to noncommutative harmonic analysis of partial differential equations in domains with geometrical symmetry , 1986 .

[18]  T. Beck Real-space mesh techniques in density-functional theory , 2000, cond-mat/0006239.

[19]  J. C. Wohlever Some computational aspects of a group theoretic finite element approach to the buckling and postbuckling analyses of plates and shells-of-revolution , 1999 .

[20]  L. Gårding,et al.  On the essential spectrum of Schrödinger operators , 1983 .

[21]  Aihui Zhou,et al.  Finite Volume Discretizations for Eigenvalue Problems with Applications to Electronic Structure Calculations , 2011, Multiscale Model. Simul..

[22]  Gene H. Golub,et al.  Matrix computations , 1983 .

[23]  Douglas J. Klein,et al.  Group Theory and Chemistry , 1973 .

[24]  D. Sorensen,et al.  4. The Implicitly Restarted Arnoldi Method , 1998 .

[25]  Lloyd N. Trefethen,et al.  Computed eigenmodes of planar regions , 2005 .

[26]  Reinhold Schneider,et al.  Daubechies wavelets as a basis set for density functional pseudopotential calculations. , 2008, The Journal of chemical physics.

[27]  V. G. Sigillito,et al.  Eigenvalues of the Laplacian in Two Dimensions , 1984 .

[28]  I. Babuška,et al.  Corrigendum: “Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems” [Math. Comp. 52 (1989), no. 186, 275–297; MR0962210 (89k:65132)] , 1994 .

[29]  David C. Young,et al.  Computational Chemistry: A Practical Guide for Applying Techniques to Real World Problems , 2001 .

[30]  Richard M. Martin Electronic Structure: Frontmatter , 2004 .

[31]  C. Y. Fong,et al.  Real-space local polynomial basis for solid-state electronic-structure calculations: A finite-element approach , 1999, cond-mat/9903313.

[32]  O. C. Zienkiewicz,et al.  The Finite Element Method for Solid and Structural Mechanics , 2013 .

[33]  White,et al.  Finite-element method for electronic structure. , 1989, Physical review. B, Condensed matter.

[34]  Y. Saad,et al.  Finite-difference-pseudopotential method: Electronic structure calculations without a basis. , 1994, Physical review letters.

[35]  M. Troyer,et al.  Continuous-time Monte Carlo methods for quantum impurity models , 2010, 1012.4474.

[36]  Gero Friesecke,et al.  Asymptotics-Based CI Models for Atoms: Properties, Exact Solution of a Minimal Model for Li to Ne, and Application to Atomic Spectra , 2009, Multiscale Model. Simul..

[37]  Donald S. McClure,et al.  The Theory of Brillouin Zones and Electronic States in Crystals. , 1961 .

[38]  Tomoya Ono,et al.  Real-space electronic-structure calculations with a time-saving double-grid technique , 2004, cond-mat/0412571.

[39]  Richard B. Lehoucq,et al.  An Automated Multilevel Substructuring Method for Eigenspace Computation in Linear Elastodynamics , 2004, SIAM J. Sci. Comput..

[40]  Kristjan Haule Quantum Monte Carlo impurity solver for cluster dynamical mean-field theory and electronic structure calculations with adjustable cluster base , 2007 .

[41]  Alain Bossavit,et al.  Boundary Value Problems with Symmetry and Their Approximation by Finite Elements , 1993, SIAM J. Appl. Math..

[42]  J. F. Cornwell,et al.  Group Theory in Physics: An Introduction , 1984 .

[43]  John Stillwell,et al.  Symmetry , 2000, Am. Math. Mon..

[44]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[45]  Richard D. Hornung,et al.  Finite element approach for density functional theory calculations on locally-refined meshes , 2006, J. Comput. Phys..

[46]  Gero Friesecke,et al.  Efficient algorithm for asymptotics-based configuration-interaction methods and electronic structure of transition metal atoms. , 2010, The Journal of chemical physics.

[47]  M. Tinkham Group Theory and Quantum Mechanics , 1964 .

[48]  Lehel Banjai,et al.  Eigenfrequencies of fractal drums , 2007 .

[49]  Xiaoying Dai,et al.  Symmetric finite volume schemes for eigenvalue problems in arbitrary dimensions , 2008 .

[50]  E. Cancès,et al.  Computational quantum chemistry: A primer , 2003 .

[51]  Lihua Shen,et al.  Finite element method for solving Kohn-Sham equations based on self-adaptive tetrahedral mesh , 2008 .

[52]  F. Cotton Chemical Applications of Group Theory , 1971 .

[53]  M. Ortiz,et al.  Non-periodic finite-element formulation of Kohn–Sham density functional theory , 2010 .

[54]  Taisuke Boku,et al.  A massively-parallel electronic-structure calculations based on real-space density functional theory , 2010, J. Comput. Phys..

[55]  Taisuke Boku,et al.  First-principles calculations of electron states of a silicon nanowire with 100,000 atoms on the K computer , 2011, 2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC).

[56]  I. Babuska,et al.  Finite element-galerkin approximation of the eigenvalues and Eigenvectors of selfadjoint problems , 1989 .

[57]  Walter C. Hurty,et al.  Vibrations of Structural Systems by Component Mode Synthesis , 1960 .

[58]  Barry Simon,et al.  Schrödinger operators in the twentieth century , 2000 .

[59]  F. Chatelin The Spectral Approximation of Linear Operators with Applications to the Computation of Eigenelements of Differential and Integral Operators , 1981 .