Further ideal multipartite access structures from integer polymatroids

Ideal access structures admit ideal secret sharing schemes where the shares have the minimal size.As multipartite access structures can well mirror the real social organizations, of which the participants arepartitioned into disjoint groups according to their properties, it is desirable to find expressive ideal multipartiteaccess structures. Integer polymatroids, due to their close relationship with ideal multipartite access structures,have been shown as a powerful tool to study the ideality of some multipartite access structures. In this paper, tocater for flexible applications, we consider several ideal multipartite access structures that further extend someknown results. We first explore a type of compartmented access structures with strictly lower bounds, whichprovide fairness among all the participant groups when recovering the secret. Then, we investigate ideal benchaccess structures where the participant set is divided into two parts, that is, line-up section and bench section.The participants in line-up section can delegate their capabilities to the participants in bench section in such away that the participants in bench section can take over the role of their delegators in line-up section, which isapplicable to emergency situations when there are no enough participants in line-up section for recovering thesecret. Finally, we propose two types of ideal partially hierarchical access structures which are suitable to morerealistic hierarchical social organizations than existing results.

[1]  Amos Beimel,et al.  On Matroids and Non-ideal Secret Sharing , 2006, TCC.

[2]  Nira Dyn,et al.  Multipartite Secret Sharing by Bivariate Interpolation , 2008, Journal of Cryptology.

[3]  Josh Benaloh,et al.  Generalized Secret Sharing and Monotone Functions , 1990, CRYPTO.

[4]  Ehud D. Karnin,et al.  On secret sharing systems , 1983, IEEE Trans. Inf. Theory.

[5]  Takayuki Hibi,et al.  Discrete Polymatroids , 2002 .

[6]  Gustavus J. Simmons,et al.  How to (Really) Share a Secret , 1988, CRYPTO.

[7]  Josep Domingo-Ferrer,et al.  Ciphertext-policy hierarchical attribute-based encryption with short ciphertexts , 2014, Inf. Sci..

[8]  Jaume Martí Farré,et al.  On secret sharing schemes, matroids and polymatroids , 2010 .

[9]  Duncan S. Wong,et al.  Practical Distributed Signatures in the Standard Model , 2014, CT-RSA.

[10]  Mitsuru Ito,et al.  Secret sharing scheme realizing general access structure , 1989 .

[11]  Amos Beimel,et al.  On Matroids and Nonideal Secret Sharing , 2008, IEEE Transactions on Information Theory.

[12]  Carles Padró,et al.  Natural Generalizations of Threshold Secret Sharing , 2011, IEEE Transactions on Information Theory.

[13]  Germán Sáez,et al.  New Results on Multipartite Access Structures , 2006, IACR Cryptol. ePrint Arch..

[14]  László Csirmaz,et al.  The Size of a Share Must Be Large , 1994, Journal of Cryptology.

[15]  Carles Padró,et al.  Ideal Hierarchical Secret Sharing Schemes , 2010, IEEE Transactions on Information Theory.

[16]  Jiandong Li,et al.  Performance analysis of three multi-radio access control policies in heterogeneous wireless networks , 2013, Science China Information Sciences.

[17]  Carles Padró,et al.  Ideal secret sharing schemes whose minimal qualified subsets have at most three participants , 2009, Des. Codes Cryptogr..

[18]  Tamir Tassa Hierarchical Threshold Secret Sharing , 2004, TCC.

[19]  Douglas R. Stinson,et al.  An explication of secret sharing schemes , 1992, Des. Codes Cryptogr..

[20]  Weighted Threshold Secret Sharing Schemes , 1999, Inf. Process. Lett..

[21]  Amos Beimel,et al.  Secret-Sharing Schemes: A Survey , 2011, IWCC.

[22]  Carles Padró,et al.  Finding Lower Bounds on the Complexity of Secret Sharing Schemes by Linear Programming , 2010, LATIN.

[23]  Adi Shamir,et al.  How to share a secret , 1979, CACM.

[24]  Carles Padró,et al.  Matroids Can Be Far from Ideal Secret Sharing , 2008, TCC.

[25]  Carles Padró,et al.  Natural Generalizations of Threshold Secret Sharing , 2014, IEEE Trans. Inf. Theory.

[26]  Siaw-Lynn Ng Ideal secret sharing schemes with multipartite access structures , 2006 .

[27]  Albrecht Beutelspacher,et al.  On 2-level secret sharing , 1993, Des. Codes Cryptogr..

[28]  Shuhong Gao,et al.  Leakproof secret sharing protocols with applications to group identification scheme , 2012, Science China Information Sciences.

[29]  Ernest F. Brickell,et al.  On the classification of ideal secret sharing schemes , 1989, Journal of Cryptology.

[30]  R. J. McEliece,et al.  On sharing secrets and Reed-Solomon codes , 1981, CACM.

[31]  Tamir Tassa,et al.  Characterizing Ideal Weighted Threshold Secret Sharing , 2008, SIAM J. Discret. Math..

[32]  Xiao Liu,et al.  Who Is Touching My Cloud , 2014, ESORICS.

[33]  Jianwei Liu,et al.  Practical Direct Chosen Ciphertext Secure Key-Policy Attribute-Based Encryption with Public Ciphertext Test , 2014, ESORICS.

[34]  Zhifang Zhang,et al.  Rational secret sharing as extensive games , 2013, Science China Information Sciences.

[35]  J. Feldman,et al.  Secure Network Coding via Filtered Secret Sharing ∗ , 2004 .

[36]  Enav Weinreb,et al.  Monotone circuits for monotone weighted threshold functions , 2006, Inf. Process. Lett..

[37]  Rita Vincenti,et al.  Three-level secret sharing schemes from the twisted cubic , 2010, Discret. Math..

[38]  G. R. BLAKLEY Safeguarding cryptographic keys , 1979, 1979 International Workshop on Managing Requirements Knowledge (MARK).

[39]  Carles Padró,et al.  Ideal Multipartite Secret Sharing Schemes , 2007, Journal of Cryptology.

[40]  Ernest F. Brickell,et al.  Some Ideal Secret Sharing Schemes , 1990, EUROCRYPT.

[41]  Alfredo De Santis,et al.  On the Size of Shares for Secret Sharing Schemes , 1991, CRYPTO.

[42]  Xiaohu You,et al.  Lifetime maximization routing with network coding in wireless multihop networks , 2012, Science China Information Sciences.

[43]  Carles Padró,et al.  Secret Sharing Schemes with Bipartite Access Structure , 1998, EUROCRYPT.

[44]  Amos Beimel,et al.  Secret Sharing and Non-Shannon Information Inequalities , 2011, IEEE Transactions on Information Theory.