Optimal H/sub 2/ control by output feedback

This paper addresses the problem of optimal H/sub 2/ control by output feedback. Necessary and sufficient conditions concerning the existence of a linear stabilizing output feedback gain are provided in terms of the intersection of a convex set and a set defined by a nonlinear real valued function. The results can be easily extended to deal with linear uncertain systems, where uncertainties are supposed to belong to convex bounded domains, providing an H/sup 2/ guaranteed cost output feedback control. Due to the geometrical properties of the above mentioned function, convex programming tools can be used for numerical purposes.<<ETX>>

[1]  M. Athans,et al.  On the determination of the optimal constant output feedback gains for linear multivariable systems , 1970 .

[2]  B. Barmish Necessary and sufficient conditions for quadratic stabilizability of an uncertain system , 1985 .

[3]  B. R. Barmish,et al.  The constrained Lyapunov problem and its application to robust output feedback stabilization , 1986 .

[4]  P. Makila,et al.  Computational methods for parametric LQ problems--A survey , 1987 .

[5]  S. Bhattacharyya,et al.  Robust control with structure perturbations , 1988 .

[6]  P. Khargonekar,et al.  State-space solutions to standard H/sub 2/ and H/sub infinity / control problems , 1989 .

[7]  P. Khargonekar,et al.  STATESPACE SOLUTIONS TO STANDARD 2 H AND H? CONTROL PROBLEMS , 1989 .

[8]  P. Khargonekar,et al.  Robust stabilization of uncertain linear systems: quadratic stabilizability and H/sup infinity / control theory , 1990 .

[9]  G. Gu On the existence of linear optimal control with output feedback , 1990 .

[10]  Stephen P. Boyd,et al.  Linear controller design: limits of performance , 1991 .

[11]  P. Peres,et al.  On a convex parameter space method for linear control design of uncertain systems , 1991 .

[12]  R. Skelton,et al.  A complete solution to the general H∞ control problem: LMI existence conditions and state space formulas , 1993, 1993 American Control Conference.

[13]  P. Peres,et al.  H ∞ guaranteed cost control for uncertain continuous-time linear systems , 1993 .

[14]  Sérgio Ricardo de Souza,et al.  Convex analysis of output feedback structural constraints , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[15]  Jose C. Geromel,et al.  An alternate numerical solution to the linear quadratic problem , 1994, IEEE Trans. Autom. Control..