Interactive Visualization of Normal Behavioral Models and Expert Rules for Maritime Anomaly Detection

Maritime surveillance systems analyze vast amounts of heterogeneous sensor data from a large number of objects. In order to support the operator while monitoring such systems, the identification of anomalous vessels or situations that might need further investigation may reduce the operator's cognitive load. While it is worth acknowledging that many existing mining applications support identification of anomalous behavior, autonomous anomaly detection systems are rarely used in the real world, since the detection of anomalous behavior is normally not a well-defined problem and therefore, human expert knowledge is needed. This calls for the development of interaction components that can support the user in the detection process. In order to support the comprehension of the knowledge embedded in the system, we propose an interactive way of visualizing expert rules and normal behavioral models built from the data. The overall goal is to facilitate the validation and update of these models and signatures, supporting the insertion of human expert knowledge while improving confidence and trust in the system.

[1]  Domenico Talia,et al.  Eureka!: an interactive and visual knowledge discovery tool , 2004, J. Vis. Lang. Comput..

[2]  Sanjay Ranka,et al.  Conditional Anomaly Detection , 2007, IEEE Transactions on Knowledge and Data Engineering.

[3]  D T Boumpas Editor's Foreword , 1998 .

[4]  Tiziana Catarci,et al.  VidaMine: a visual data mining environment , 2004, J. Vis. Lang. Comput..

[5]  Stefan Axelsson,et al.  Intrusion Detection Systems: A Survey and Taxonomy , 2002 .

[6]  Penny Rheingans,et al.  Visualizing high-dimensional predictive model quality , 2000 .

[7]  Dario Bruzzese,et al.  Visual Mining of Association Rules , 2008, Visual Data Mining.

[8]  Tom Ziemke,et al.  Improving maritime anomaly detection and situation awareness through interactive visualization , 2008, 2008 11th International Conference on Information Fusion.

[9]  Chris North,et al.  Workshop Report: Information Visualization–Human-Centered Issues in Visual Representation, Interaction, and Evaluation , 2007, Inf. Vis..

[10]  Dr. Alex A. Freitas Data Mining and Knowledge Discovery with Evolutionary Algorithms , 2002, Natural Computing Series.

[11]  Maria Francesca Costabile,et al.  Visualizing Association Rules in a Framework for Visual Data Mining , 2005, From Integrated Publication and Information Systems to Virtual Information and Knowledge Environments.

[12]  Chris North,et al.  Workshop report: information visualization-human-centered issues in visual representation, interaction, and evalution , 2007 .

[13]  Kristin A. Cook,et al.  Illuminating the Path: The Research and Development Agenda for Visual Analytics , 2005 .

[14]  Lars Niklasson,et al.  Trajectory clustering for coastal surveillance , 2007, 2007 10th International Conference on Information Fusion.

[15]  Rikard Laxhammar,et al.  Anomaly detection for sea surveillance , 2008, 2008 11th International Conference on Information Fusion.

[16]  Anders Holst,et al.  Incremental stream clustering and anomaly detection , 2008 .

[17]  Vladik Kreinovich,et al.  Best student paper award , 1996, Reliab. Comput..

[18]  Jean Roy,et al.  Anomaly detection in the maritime domain , 2008, SPIE Defense + Commercial Sensing.

[19]  Li Yang,et al.  Visual Exploration of Frequent Itemsets and Association Rules , 2008, Visual Data Mining.

[20]  Tom Ziemke,et al.  Reasoning about anomalies: a study of the analytical process of detecting and identifying anomalous behavior in maritime traffic data , 2009, Defense + Commercial Sensing.

[21]  Tom Ziemke,et al.  VISAD: an interactive and visual analytical tool for the detection of behavioral anomalies in maritime traffic data , 2009, Defense + Commercial Sensing.

[22]  Michela Bertolotto,et al.  Exploratory spatio-temporal data mining and visualization , 2007, J. Vis. Lang. Comput..

[23]  Yang Cai,et al.  Visual transformation for interactive spatiotemporal data mining , 2007, Knowledge and Information Systems.

[24]  Download Book,et al.  Information Visualization in Data Mining and Knowledge Discovery , 2001 .

[25]  Christopher A. Badurek,et al.  Review of Information visualization in data mining and knowledge discovery by Usama Fayyad, Georges G. Grinstein, and Andreas Wierse. Morgan Kaufmann 2002 , 2003 .

[26]  Chris North,et al.  07221 Executive Summary - Information Visualization - Human-Centered Issues in Visual Representation, Interaction, and Evaluation , 2007, Information Visualization - Human-Centered Issues in Visual Representation, Interaction, and Evaluation.

[27]  Egils Sviestins,et al.  Rule-based situation assessment for sea surveillance , 2006, SPIE Defense + Commercial Sensing.

[28]  Tomoharu Iwata,et al.  Visualisation of Anomaly Using Mixture Model , 2004, KES.

[29]  B.J. Rhodes,et al.  Maritime situation monitoring and awareness using learning mechanisms , 2005, MILCOM 2005 - 2005 IEEE Military Communications Conference.

[30]  Mihael Ankerst,et al.  Visual Data Mining , 2001, Encyclopedia of GIS.

[31]  James B. Kraiman,et al.  Automated anomaly detection processor , 2002, SPIE Defense + Commercial Sensing.

[32]  Haim Levkowitz,et al.  From Visual Data Exploration to Visual Data Mining: A Survey , 2003, IEEE Trans. Vis. Comput. Graph..

[33]  Daniel A. Keim,et al.  Information Visualization and Visual Data Mining , 2002, IEEE Trans. Vis. Comput. Graph..

[34]  Jung-Min Park,et al.  An overview of anomaly detection techniques: Existing solutions and latest technological trends , 2007, Comput. Networks.

[35]  F. Johansson,et al.  Detection of vessel anomalies - a Bayesian network approach , 2007, 2007 3rd International Conference on Intelligent Sensors, Sensor Networks and Information.

[36]  Allen M. Waxman,et al.  Associative Learning of Vessel Motion Patterns for Maritime Situation Awareness , 2006, 2006 9th International Conference on Information Fusion.

[37]  John W. Tukey,et al.  Exploratory Data Analysis. , 1979 .

[38]  Pak Chung Wong,et al.  Visualizing association rules for text mining , 1999, Proceedings 1999 IEEE Symposium on Information Visualization (InfoVis'99).

[39]  Ioannis Kopanakis,et al.  Visual data mining modeling techniques for the visualization of mining outcomes , 2003, J. Vis. Lang. Comput..

[40]  Gudrun Høye,et al.  Maritime traffic monitoring using a space-based AIS receiver , 2006 .

[41]  Gabriel Maciá-Fernández,et al.  Anomaly-based network intrusion detection: Techniques, systems and challenges , 2009, Comput. Secur..

[42]  C. Lee Giles,et al.  Probabilistic user behavior models , 2003, Third IEEE International Conference on Data Mining.

[43]  Tom Ziemke,et al.  Supporting Maritime Situation Awareness Using Self Organizing Maps and Gaussian Mixture Models , 2008, SCAI.

[44]  Amitava Datta,et al.  VisAR : A New Technique for Visualizing Mined Association Rules , 2005, ADMA.

[45]  Heikki Mannila,et al.  Principles of Data Mining , 2001, Undergraduate Topics in Computer Science.