Inorganic nanotubes and fullerene-like nanoparticles

Although graphite, with its anisotropic two-dimensional lattice, is the stable form of carbon under ambient conditions, on nanometre length scales it forms zero- and one-dimensional structures, namely fullerenes and nanotubes, respectively. This virtue is not limited to carbon and, in recent years, fullerene-like structures and nanotubes have been made from numerous compounds with layered two-dimensional structures. Furthermore, crystalline and polycrystalline nanotubes of pure elements and compounds with quasi-isotropic (three-dimensional) unit cells have also been synthesized, usually by making use of solid templates. These findings open up vast opportunities for the synthesis and study of new kinds of nanostructures with properties that may differ significantly from the corresponding bulk materials. Various potential applications have been proposed for the inorganic nanotubes and the fullerene-like phases. Fullerene-like nanoparticles have been shown to exhibit excellent solid lubrication behaviour, suggesting many applications in, for example, the automotive and aerospace industries, home appliances, and recently for medical technology. Various other potential applications, in catalysis, rechargeable batteries, drug delivery, solar cells and electronics have also been proposed.

[1]  P. Parilla,et al.  Formation of nanooctahedra in molybdenum disulfide and molybdenum diselenide using pulsed laser vaporization. , 2004, The journal of physical chemistry. B.

[2]  Peidong Yang,et al.  Inorganic nanotubes: a novel platform for nanofluidics. , 2006, Accounts of chemical research.

[3]  Dongju Zhang,et al.  Stability and electronic structure of AlN nanotubes , 2003 .

[4]  C. Zhi,et al.  Immobilization of proteins on boron nitride nanotubes. , 2005, Journal of the American Chemical Society.

[5]  Y. Prior,et al.  Synthesis of NiCl2 nanotubes and fullerene-like structures by laser ablation: theoretical considerations and comparison with MoS2 nanotubes , 2003 .

[6]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[7]  Jun Chen,et al.  Titanium disulfide nanotubes as hydrogen-storage materials. , 2003, Journal of the American Chemical Society.

[8]  Yong Wang,et al.  Polycrystalline SnO2 Nanotubes Prepared via Infiltration Casting of Nanocrystallites and Their Electrochemical Application , 2005 .

[9]  Jun Chen,et al.  Lithium intercalation in open-ended TiS2 nanotubes. , 2003, Angewandte Chemie.

[10]  Daihua Zhang,et al.  Single Crystalline Magnetite Nanotubes. , 2005 .

[11]  C. R. Martin,et al.  Smart nanotubes for bioseparations and biocatalysis. , 2002, Journal of the American Chemical Society.

[12]  Y. Bando,et al.  Growth of Single‐Crystal Indium Nitride Nanotubes and Nanowires by a Controlled‐Carbonitridation Reaction Route , 2004 .

[13]  F. Bundy The P, T phase and reaction diagram for elemental carbon, 1979 , 1980 .

[14]  H. A. Therese,et al.  Metal–Organic Chemical Vapor Depostion Synthesis of Hollow Inorganic‐Fullerene‐Type MoS2 and MoSe2 Nanoparticles , 2005 .

[15]  Reshef Tenne,et al.  Preparation and structural characterization of stable Cs2O closed-cage structures. , 2005, Angewandte Chemie.

[16]  H. Zeng,et al.  Room-temperature ferromagnetic nanotubes controlled by electron or hole doping , 2004, Nature.

[17]  J. Baker,et al.  Density Functional Calculations on WH6 and WF6 , 1996 .

[18]  Sidney R. Cohen,et al.  On the mechanical behavior of WS2 nanotubes under axial tension and compression. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Dmitri Golberg,et al.  Single‐Crystalline In2O3 Nanotubes Filled with In , 2003 .

[20]  H. Kroto,et al.  C 60 Buckminsterfullerene , 1990 .

[21]  Reinhard Nesper,et al.  Oxidic nanotubes and nanorods--anisotropic modules for a future nanotechnology. , 2002, Angewandte Chemie.

[22]  M. Jansen,et al.  Synthesis of Fullerene‐Like Cs2O Nanoparticles by Concentrated Sunlight. , 2007 .

[23]  S. Krivovichev,et al.  Nanoscale tubules in uranyl selenates. , 2005, Angewandte Chemie.

[24]  Hongzhe Sun,et al.  Fabrication of bismuth subcarbonate nanotube arrays from bismuth citrate. , 2006, Chemical communications.

[25]  R. Tenne,et al.  Synthesis of NbS2 nanoparticles with (nested) fullerene-like structure (IF) , 2002 .

[26]  K. Suslick,et al.  Sonochemical Preparation of Hollow Nanospheres and Hollow Nanocrystals. , 2005 .

[27]  Lianmao Peng,et al.  Electronic, optical, and magnetic properties of Fe-intercalated H2Ti3O7 nanotubes: First-principles calculations and experiments , 2006 .

[28]  G. Falini,et al.  Geoinspired synthetic chrysotile nanotubes , 2006 .

[29]  C. Zhi,et al.  Effective precursor for high yield synthesis of pure BN nanotubes , 2005 .

[30]  N. Fleischer,et al.  Ultralow-friction and wear properties of IF-WS2 under boundary lubrication , 2005 .

[31]  S. Louie,et al.  Formation and electronic properties of double-walled boron nitride nanotubes , 2005 .

[32]  J. Ge,et al.  Atmospheric pressure chemical vapor deposition: an alternative route to large-scale MoS2 and WS2 inorganic fullerene-like nanostructures and nanoflowers. , 2004, Chemistry.

[33]  Weiyang Li,et al.  Synthesis, characterization, and electrochemical application of Ca(OH)2-, Co(OH)2-, and Y(OH)3-Coated Ni(OH)2 tubes. , 2005, The journal of physical chemistry. B.

[34]  Itaru Honma,et al.  Biosensing Properties of TitanateNanotube Films: Selective Detection of Dopamine in the Presence of Ascorbate and Uric Acid , 2006 .

[35]  Lev Rapoport,et al.  Applications of WS2(MoS2) inorganic nanotubes and fullerene-like nanoparticles for solid lubrication and for structural nanocomposites , 2005 .

[36]  M. Nath,et al.  Superconducting NbSe2 nanostructures , 2003 .

[37]  W. Lipscomb,et al.  Molecular orbital studies on large closo boron hydrides , 1978 .

[38]  C. Zhi,et al.  Purification of boron nitride nanotubes through polymer wrapping. , 2006, The journal of physical chemistry. B.

[39]  L. Pauling THE STRUCTURE OF THE CHLORITES. , 1930, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Zilong Tang,et al.  H-titanate nanotube: a novel lithium intercalation host with large capacity and high rate capability , 2005 .

[41]  T. Pakkanen,et al.  Quantum chemical treatment of large nanotubes via use of line group symmetry: structural preferences of magnesium dichloride nanotubes. , 2006, The journal of physical chemistry. B.

[42]  Sibylle Gemming,et al.  Structure and stability of molybdenum sulfide fullerenes. , 2007, Angewandte Chemie.

[43]  B. Reynard,et al.  Pressure-induced exfoliation of inorganic fullerene-like WS2 particles in a Hertzian contact , 2006 .

[44]  A. Albu-Yaron,et al.  Inorganic fullerene-like nanoparticles of TiS2 , 2005 .

[45]  R. Tenne,et al.  High-Rate, Gas-Phase Growth of MoS2 Nested Inorganic Fullerenes and Nanotubes , 1995, Science.

[46]  Tremel Inorganic Nanotubes. , 1999, Angewandte Chemie.

[47]  Craig A. Grimes,et al.  Enhanced photoelectrochemical-response in highly ordered TiO2 nanotube-arrays anodized in boric acid containing electrolyte , 2006 .

[48]  C. Mühle,et al.  Synthesis of Fullerene‐like Cs2O Nanoparticles by Concentrated Sunlight , 2006 .

[49]  R. Tenne,et al.  Polyhedral and cylindrical structures of tungsten disulphide , 1992, Nature.

[50]  Lev Rapoport,et al.  Self-lubricating coatings containing fullerene-like WS2 nanoparticles for orthodontic wires and other possible medical applications , 2006 .

[51]  Craig A. Grimes,et al.  Backside illuminated dye-sensitized solar cells based on titania nanotube array electrodes , 2006 .

[52]  Masa Ishigami,et al.  Observation of the giant stark effect in boron-nitride nanotubes. , 2005, Physical review letters.

[53]  Yueyuan Xia,et al.  Strain energy and electronic structures of silicon carbide nanotubes: Density functional calculations , 2005 .

[54]  C. Grimes,et al.  Application of highly-ordered TiO2 nanotube-arrays in heterojunction dye-sensitized solar cells , 2006 .

[55]  S. Nair,et al.  Phenomenology of the growth of single-walled aluminosilicate and aluminogermanate nanotubes of precise dimensions , 2005 .

[56]  Michal Lahav,et al.  Template Synthesis of Nanotubes by Room-Temperature Coalescence of Metal Nanoparticles , 2005 .

[57]  Steven G. Louie,et al.  Tuning the electronic properties of boron nitride nanotubes with transverse electric fields: A giant dc Stark effect , 2004 .

[58]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[59]  Heon-Jin Choi,et al.  Single-crystal gallium nitride nanotubes , 2003, Nature.

[60]  G. Salitra,et al.  Nested fullerene-like structures , 1993, Nature.

[61]  M. Kanatzidis,et al.  Inorganic Single Wall Nanotubes of SbPS4-xSex (0 ≤ x ≤ 3) with Tunable Band Gap , 2006 .

[62]  Mato Knez,et al.  Monocrystalline spinel nanotube fabrication based on the Kirkendall effect , 2006, Nature materials.

[63]  D. Mihailovic,et al.  Electrochemical preparation and characterisation of LizMoS2−x nanotubes , 2003 .

[64]  F. Cheng,et al.  MoS2–Ni Nanocomposites as Catalysts for Hydrodesulfurization of Thiophene and Thiophene Derivatives , 2006 .

[65]  H. A. Therese,et al.  VS2 nanotubes containing organic-amine templates from the NT-VOx precursors and reversible copper intercalation in NT-VS2. , 2004, Angewandte Chemie.

[66]  L. Massa,et al.  Examples of large closo boron hydride analogs of carbon fullerenes , 1992 .

[67]  M. Gazzano,et al.  Tubular-shaped stoichiometric chrysotile nanocrystals. , 2004, Chemistry.

[68]  P. D. Brown,et al.  Shock-absorbing and failure mechanisms of WS2 and MoS2 nanoparticles with fullerene-like structures under shock wave pressure. , 2005, Journal of the American Chemical Society.

[69]  M. Miyauchi,et al.  Electrochromism of titanate-based nanotubes. , 2005, Angewandte Chemie.

[70]  Sidney R. Cohen,et al.  Stochastic strength of nanotubes : An appraisal of available data , 2005 .

[71]  H. A. Therese,et al.  Metal–Organic Chemical Vapor Depostion Synthesis of Hollow Inorganic‐Fullerene‐Type MoS2 and MoSe2 Nanoparticles , 2005 .

[72]  Craig A. Grimes,et al.  A room-temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination , 2004 .

[73]  Zhijun Zhang,et al.  Improved Optoelectronic Characteristics of Light-Emitting Diodes by Using a Dehydrated Nanotube Titanic Acid (DNTA)-Polymer Nanocomposite , 2004 .