The spherical mean value operator with centers on a sphere

Let B represent the ball of radius ρ in Rn and S its boundary; consider the map , where represents the mean value of f on a sphere of radius r centered at p. We summarize and discuss the results concerning the injectivity of , the characterization of the range of , and the inversion of . There is a close connection between mean values over spheres and solutions of initial value problems for the wave equation. We also summarize the results for the corresponding wave equation problem.

[1]  Rakesh,et al.  Determining a Function from Its Mean Values Over a Family of Spheres , 2004, SIAM J. Math. Anal..

[2]  Stephen J. Norton,et al.  Reconstruction of a two‐dimensional reflecting medium over a circular domain: Exact solution , 1980 .

[3]  Andrew E. Yagle Inversion of spherical means using geometric inversion and Radon transforms , 1992 .

[4]  Thomas Schuster,et al.  On a Regularization Scheme for Linear Operators in Distribution Spaces with an Application to the Spherical Radon Transform , 2005, SIAM J. Appl. Math..

[5]  Stephen J. Norton,et al.  Ultrasonic Reflectivity Imaging in Three Dimensions: Exact Inverse Scattering Solutions for Plane, Cylindrical, and Spherical Apertures , 1981, IEEE Transactions on Biomedical Engineering.

[6]  F. John Plane Waves and Spherical Means: Applied To Partial Differential Equations , 1981 .

[7]  A. Pinkus,et al.  Approximation of Multivariate Functions , 2004 .

[8]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[9]  Victor Palamodov Remarks on the general Funk-Radon transform and thermoacoustic tomography , 2007 .

[10]  Alexander Goncharov,et al.  Differential Equations and Integral Geometry , 1997 .

[11]  Eric Todd Quinto,et al.  Injectivity Sets for the Radon Transform over Circles and Complete Systems of Radial Functions , 1996 .

[12]  Rakesh,et al.  The range of the spherical mean value operator for functions supported in a ball , 2006 .

[13]  L. Kunyansky,et al.  Explicit inversion formulae for the spherical mean Radon transform , 2006, math/0609341.

[14]  Eric Todd Quinto,et al.  Geometry of stationary sets for the wave equation in ℝn: The case of finitely supported initial data , 2001 .

[15]  Carlos A. Berenstein,et al.  Approximation by spherical waves inLp-spaces , 1996 .

[16]  Minghua Xu,et al.  Erratum: Universal back-projection algorithm for photoacoustic computed tomography [Phys. Rev. E 71, 016706 (2005)] , 2007 .

[17]  E. T. Quinto,et al.  Range descriptions for the spherical mean , 2006 .

[18]  A. Bukhgeǐm,et al.  Solution of the inverse problem for the equation of elastic waves by the method of spherical means , 1978 .

[19]  John A. Fawcett,et al.  Inversion of N-dimensional spherical averages , 1985 .

[20]  E. T. Quinto Support Theorems for the Spherical Radon Transform on Manifolds , 2006 .

[21]  William Rundell,et al.  Surveys on solution methods for inverse problems , 2000 .

[22]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[23]  A. Pinkus,et al.  Fundamentality of Ridge Functions , 1993 .

[24]  V. Palamodov Reconstructive Integral Geometry , 2004 .

[25]  Lihong V. Wang,et al.  Universal back-projection algorithm for photoacoustic computed tomography. , 2005 .

[26]  Markus Haltmeier,et al.  Inversion of Spherical Means and the Wave Equation in Even Dimensions , 2007, SIAM J. Appl. Math..

[27]  E. Stein,et al.  Introduction to Fourier Analysis on Euclidean Spaces. , 1971 .

[28]  L. Andersson On the determination of a function from spherical averages , 1988 .

[29]  Peter Kuchment,et al.  On the injectivity of the circular Radon transform , 2005 .

[30]  V V Volchkov Injectivity sets for the Radon transform over a sphere , 1999 .

[31]  Trace identities for solutions of the wave equation with initial data supported in a ball , 2005 .

[32]  Otmar Scherzer,et al.  Filtered backprojection for thermoacoustic computed tomography in spherical geometry , 2005, Mathematical Methods in the Applied Sciences.

[33]  Eric Todd Quinto,et al.  A Radon transform on spheres through the origin in ⁿ and applications to the Darboux equation , 1980 .

[34]  S. Patch,et al.  Thermoacoustic tomography--consistency conditions and the partial scan problem. , 2004, Physics in medicine and biology.

[35]  P. Kuchment Generalized Transforms of Radon Type and Their Applications , 2005 .

[36]  Peter Kuchment,et al.  A Range Description for the Planar Circular Radon Transform , 2006, SIAM J. Math. Anal..

[37]  E. T. Quinto,et al.  Range descriptions for the spherical mean Radon transform. I. Functions supported in a ball , 2006, math/0606314.