Vafa-Witten Theory: Invariants, Floer Homologies, Higgs Bundles, a Geometric Langlands Correspondence, and Categorification

We revisit Vafa-Witten theory in the more general setting whereby the underlying moduli space is not that of instantons, but of the full Vafa-Witten equations. We physically derive (i) a novel Vafa-Witten four-manifold invariant associated with this moduli space, (ii) their relation to Gromov-Witten invariants, (iii) a novel Vafa-Witten Floer homology assigned to three-manifold boundaries, (iv) a novel Vafa-Witten Atiyah-Floer correspondence, (v) a proof and generalization of a conjecture by Abouzaid-Manolescu in [1] about the hypercohomology of a perverse sheaf of vanishing cycles, (vi) a Langlands duality of these invariants, Floer homologies and hypercohomology, and (vii) a quantum geometric Langlands correspondence with purely imaginary parameter that specializes to the classical correspondence in the zero-coupling limit, where Higgs bundles feature in (ii), (iv), (vi) and (vii). We also explain how these invariants and homologies will be categorified in the process, and discuss their higher categorification. We thereby relate differential and enumerative geometry, topology and geometric representation theory in mathematics, via a maximally-supersymmetric topological quantum field theory with electric-magnetic duality in physics.

[1]  Teng Huang A Compactness Theorem for Stable Flat SL(2, ℂ) Connections on 3-Folds , 2022, Acta Mathematica Scientia.

[2]  Andr'es Pedroza A Quick View of Lagrangian Floer Homology , 2017, 1701.02293.

[3]  Ciprian Manolescu,et al.  A sheaf-theoretic model for SL(2,C) Floer homology , 2017, 1708.00289.

[4]  Andriy Haydys Fukaya-Seidel category and gauge theory , 2010, 1010.2353.

[5]  Kevin L. Setter Topological quantum field theory and the geometric Langlands correspondence , 2012 .

[6]  D. Joyce,et al.  Symmetries and stabilization for sheaves of vanishing cycles , 2012, 1211.3259.

[7]  A. Kapustin Topological Field Theory, Higher Categories, and Their Applications , 2010, 1004.2307.

[8]  A. Kapustin,et al.  Surface Operators in Four-Dimensional Topological Gauge Theory and Langlands Duality , 2010, 1002.0385.

[9]  S. Gukov Surface Operators and Knot Homologies , 2007, 0706.2369.

[10]  A. Kapustin A Note on Quantum Geometric Langlands Duality, Gauge Theory, and Quantization of the Moduli Space of Flat Connections , 2008, 0811.3264.

[11]  E. Witten,et al.  Electric-Magnetic Duality And The Geometric Langlands Program , 2006, hep-th/0604151.

[12]  E. Frenkel Lectures on the Langlands program and conformal field theory , 2005, hep-th/0512172.

[13]  Cumrun Vafa,et al.  Mirror Symmetry , 2000, hep-th/0002222.

[14]  C. Hofman,et al.  Topological Field Theory , 2000 .

[15]  V. Muñoz Quantum cohomology of the moduli space of stable bundles over a Riemann surface , 1997, alg-geom/9711030.

[16]  C. Lozano,et al.  Mathai-Quillen formulation of twisted N = 4 supersymmetric gauge theories in four dimensions , 1997, hep-th/9702106.

[17]  R. Dijkgraaf,et al.  Balanced Topological Field Theories , 1996, hep-th/9608169.

[18]  C. Vafa,et al.  Topological reduction of 4D SYM to 2D σ-models , 1995, hep-th/9501096.

[19]  E. Witten,et al.  A Strong coupling test of S duality , 1994, hep-th/9408074.

[20]  M. Blau,et al.  Topological gauge theories from supersymmetric quantum mechanics on spaces of connections , 1991, hep-th/9112064.

[21]  M. Blau,et al.  N=2 topological gauge theory, the Euler characteristic of moduli spaces, and the Casson invariant , 1991, hep-th/9112012.

[22]  A. Beilinson,et al.  Determinant bundles and Virasoro algebras , 1988 .

[23]  J. Yamron Topological actions from twisted supersymmetric theories , 1988 .

[24]  A. Floer,et al.  An instanton-invariant for 3-manifolds , 1988 .

[25]  Edward Witten,et al.  Topological quantum field theory , 1988 .

[26]  A. Floer,et al.  Morse theory for Lagrangian intersections , 1988 .

[27]  N. Hitchin THE SELF-DUALITY EQUATIONS ON A RIEMANN SURFACE , 1987 .

[28]  M. Atiyah New invariants of 3 and 4 dimensional manifolds , 1987 .

[29]  Daniel Z. Freedman,et al.  Geometrical structure and ultraviolet finiteness in the supersymmetric σ-model , 1981 .